复杂网络时空传染病模型的模式动力学分析与参数辨识

IF 1.8 4区 数学 Q2 BIOLOGY
Tao Yang , Linhe Zhu , Shuling Shen , Le He
{"title":"复杂网络时空传染病模型的模式动力学分析与参数辨识","authors":"Tao Yang ,&nbsp;Linhe Zhu ,&nbsp;Shuling Shen ,&nbsp;Le He","doi":"10.1016/j.mbs.2025.109502","DOIUrl":null,"url":null,"abstract":"<div><div>This paper primarily explores the dynamics of reaction–diffusion systems with advection effects on discrete networks and establishes a corresponding infectious disease transmission model incorporating delay effects. Initially, we consider the conditions for the existence of the equilibrium point and linearly approximate the time delay near this equilibrium point. Then we discuss the necessary conditions for Turing instability under various constraints based on the approximate system. We also introduce two types of lower-order network structures. In one of these lower-order networks, we discuss the directional movement of two different populations. To further analyze the dynamic behavior on different networks, we construct a special higher-order network based on another lower-order network. In addition, we use optimal control to solve the problem of parameter identification. We conduct extensive numerical simulations to study the impact of advection effects and higher-order networks on system dynamics, pattern parameter identification under unknown conditions, and model fitting and prediction based on actual data, which validate the model’s effectiveness and practical utility.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"387 ","pages":"Article 109502"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pattern dynamics analysis and parameter identification of spatiotemporal infectious disease models on complex networks\",\"authors\":\"Tao Yang ,&nbsp;Linhe Zhu ,&nbsp;Shuling Shen ,&nbsp;Le He\",\"doi\":\"10.1016/j.mbs.2025.109502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper primarily explores the dynamics of reaction–diffusion systems with advection effects on discrete networks and establishes a corresponding infectious disease transmission model incorporating delay effects. Initially, we consider the conditions for the existence of the equilibrium point and linearly approximate the time delay near this equilibrium point. Then we discuss the necessary conditions for Turing instability under various constraints based on the approximate system. We also introduce two types of lower-order network structures. In one of these lower-order networks, we discuss the directional movement of two different populations. To further analyze the dynamic behavior on different networks, we construct a special higher-order network based on another lower-order network. In addition, we use optimal control to solve the problem of parameter identification. We conduct extensive numerical simulations to study the impact of advection effects and higher-order networks on system dynamics, pattern parameter identification under unknown conditions, and model fitting and prediction based on actual data, which validate the model’s effectiveness and practical utility.</div></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"387 \",\"pages\":\"Article 109502\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556425001282\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425001282","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文主要探讨了离散网络中具有平流效应的反应扩散系统的动力学问题,建立了相应的考虑延迟效应的传染病传播模型。首先考虑平衡点存在的条件,并对平衡点附近的时滞进行线性近似。然后讨论了基于近似系统的各种约束条件下图灵不稳定性的必要条件。我们还介绍了两种低阶网络结构。在其中一个低阶网络中,我们讨论了两个不同种群的定向运动。为了进一步分析不同网络上的动态行为,我们在另一个低阶网络的基础上构造了一个特殊的高阶网络。此外,我们使用最优控制来解决参数辨识问题。通过大量的数值模拟,研究了平流效应和高阶网络对系统动力学、未知条件下模式参数辨识、基于实际数据的模型拟合和预测的影响,验证了模型的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern dynamics analysis and parameter identification of spatiotemporal infectious disease models on complex networks
This paper primarily explores the dynamics of reaction–diffusion systems with advection effects on discrete networks and establishes a corresponding infectious disease transmission model incorporating delay effects. Initially, we consider the conditions for the existence of the equilibrium point and linearly approximate the time delay near this equilibrium point. Then we discuss the necessary conditions for Turing instability under various constraints based on the approximate system. We also introduce two types of lower-order network structures. In one of these lower-order networks, we discuss the directional movement of two different populations. To further analyze the dynamic behavior on different networks, we construct a special higher-order network based on another lower-order network. In addition, we use optimal control to solve the problem of parameter identification. We conduct extensive numerical simulations to study the impact of advection effects and higher-order networks on system dynamics, pattern parameter identification under unknown conditions, and model fitting and prediction based on actual data, which validate the model’s effectiveness and practical utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信