ACM Transactions on Graphics最新文献

筛选
英文 中文
Diffusing Winding Gradients (DWG): A Parallel and Scalable Method for 3D Reconstruction from Unoriented Point Clouds 扩散缠绕梯度(DWG):一种从无方向点云进行三维重建的并行和可扩展方法
IF 6.2 1区 计算机科学
ACM Transactions on Graphics Pub Date : 2025-04-01 DOI: 10.1145/3727873
Weizhou Liu, Jiaze Li, Xuhui Chen, Fei Hou, Shiqing Xin, Xingce Wang, Zhongke Wu, Chen Qian, Ying He
{"title":"Diffusing Winding Gradients (DWG): A Parallel and Scalable Method for 3D Reconstruction from Unoriented Point Clouds","authors":"Weizhou Liu, Jiaze Li, Xuhui Chen, Fei Hou, Shiqing Xin, Xingce Wang, Zhongke Wu, Chen Qian, Ying He","doi":"10.1145/3727873","DOIUrl":"https://doi.org/10.1145/3727873","url":null,"abstract":"This paper presents Diffusing Winding Gradients (DWG) for reconstructing watertight surfaces from unoriented point clouds. Our method exploits the alignment between the gradients of screened generalized winding number (GWN) field–a robust variant of the standard GWN field– and globally consistent normals to orient points. Starting with an unoriented point cloud, DWG initially assigns a random normal to each point. It computes the corresponding sGWN field and extract a level set whose iso-value is the average GWN values across all input points. The gradients of this level set are then utilized to update the point normals. This cycle of recomputing the sGWN field and updating point normals is repeated until the sGWN level sets stabilize and their gradients cease to change. Unlike conventional methods, DWG does not rely on solving linear systems or optimizing objective functions, which simplifies its implementation and enhances its suitability for efficient parallel execution. Experimental results demonstrate that DWG significantly outperforms existing methods in terms of runtime performance. For large-scale models with 10 to 20 million points, our CUDA implementation on an NVIDIA GTX 4090 GPU achieves speeds 30-120 times faster than iPSR, the leading sequential method, tested on a high-end PC with an Intel i9 CPU. Furthermore, by employing a screened variant of GWN, DWG demonstrates enhanced robustness against noise and outliers, and proves effective for models with thin structures and real-world inputs with overlapping and misaligned scans. For source code and additional results, visit our project webpage: https://dwgtech.github.io/.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"50 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143757802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast Determination and Computation of Self-intersections for NURBS Surfaces NURBS曲面自交的快速确定与计算
IF 6.2 1区 计算机科学
ACM Transactions on Graphics Pub Date : 2025-03-31 DOI: 10.1145/3727620
Kai Li, Xiaohong Jia, Falai Chen
{"title":"Fast Determination and Computation of Self-intersections for NURBS Surfaces","authors":"Kai Li, Xiaohong Jia, Falai Chen","doi":"10.1145/3727620","DOIUrl":"https://doi.org/10.1145/3727620","url":null,"abstract":"Self-intersections of NURBS surfaces are unavoidable during the CAD modeling process, especially in operations such as offset or sweeping. The existence of self-intersections might cause problems in the latter simulation and manufacturing process. Therefore, fast detection of self-intersections of NURBS is highly demanded in industrial applications. Self-intersections are essentially singular points on the surface. Although there is a long history of exploring singular points in mathematics community, the fast and robust determination and computation of self-intersections have been a challenging problem in practice. In this paper, we construct an algebraic signature whose non-negativity is proven to be sufficient for excluding the existence of self-intersections from a global perspective. An efficient algorithm for determining the existence of self-intersections is provided by recursively using this signature. Once the self-intersection is detected, if necessary, the self-intersection locus can also be computed via a further recursively cross-use of this signature and the surface-surface intersection function. Various experiments and comparisons with existing methods, as well as geometry kernels, including OCCT and ACIS, validate the robustness and efficiency of our algorithm. We also adapt our algorithm to self-intersection elimination, self-intersection trimming, and applications in mesh generation, boolean operation, and shelling.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"57 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143736616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SpotLessSplats: Ignoring Distractors in 3D Gaussian Splatting SpotLessSplats:忽略3D高斯飞溅中的干扰物
IF 6.2 1区 计算机科学
ACM Transactions on Graphics Pub Date : 2025-03-29 DOI: 10.1145/3727143
Sara Sabour, Lily Goli, George Kopanas, Mark Matthews, Dmitry Lagun, Leonidas Guibas, Alec Jacobson, David Fleet, Andrea Tagliasacchi
{"title":"SpotLessSplats: Ignoring Distractors in 3D Gaussian Splatting","authors":"Sara Sabour, Lily Goli, George Kopanas, Mark Matthews, Dmitry Lagun, Leonidas Guibas, Alec Jacobson, David Fleet, Andrea Tagliasacchi","doi":"10.1145/3727143","DOIUrl":"https://doi.org/10.1145/3727143","url":null,"abstract":"3D Gaussian Splatting (3DGS) is a promising technique for 3D reconstruction, offering efficient training and rendering speeds, making it suitable for real-time applications. However, current methods require highly controlled environments—no moving people or wind-blown elements, and consistent lighting—to meet the inter-view consistency assumption of 3DGS. This makes reconstruction of real-world captures problematic. We present SpotLessSplats, an approach that leverages pre-trained and general-purpose features coupled with robust optimization to effectively ignore transient distractors. Our method achieves state-of-the-art reconstruction quality both visually and quantitatively, on casual captures.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"100 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NeST: Neural Stress Tensor Tomography by leveraging 3D Photoelasticity 利用三维光弹性的神经应力张量断层扫描
IF 6.2 1区 计算机科学
ACM Transactions on Graphics Pub Date : 2025-03-22 DOI: 10.1145/3723873
Akshat Dave, Tianyi Zhang, Aaron Young, Ramesh Raskar, Wolfgang Heidrich, Ashok Veeraraghavan
{"title":"NeST: Neural Stress Tensor Tomography by leveraging 3D Photoelasticity","authors":"Akshat Dave, Tianyi Zhang, Aaron Young, Ramesh Raskar, Wolfgang Heidrich, Ashok Veeraraghavan","doi":"10.1145/3723873","DOIUrl":"https://doi.org/10.1145/3723873","url":null,"abstract":"Photoelasticity enables full-field stress analysis in transparent objects through stress-induced birefringence. Existing techniques are limited to 2D slices and require destructively slicing the object. Recovering the internal 3D stress distribution of the entire object is challenging as it involves solving a tensor tomography problem and handling phase wrapping ambiguities. We introduce NeST, an analysis-by-synthesis approach for reconstructing 3D stress tensor fields as neural implicit representations from polarization measurements. Our key insight is to jointly handle phase unwrapping and tensor tomography using a differentiable forward model based on Jones calculus. Our non-linear model faithfully matches real captures, unlike prior linear approximations. We develop an experimental multi-axis polariscope setup to capture 3D photoelasticity and experimentally demonstrate that NeST reconstructs the internal stress distribution for objects with varying shape and force conditions. Additionally, we showcase novel applications in stress analysis, such as visualizing photoelastic fringes by virtually slicing the object and viewing photoelastic fringes from unseen viewpoints. NeST paves the way for scalable non-destructive 3D photoelastic analysis.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"6 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143675239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinematic Motion Retargeting for Contact-Rich Anthropomorphic Manipulations 用于富接触拟人操纵的运动学运动重定位
IF 6.2 1区 计算机科学
ACM Transactions on Graphics Pub Date : 2025-03-15 DOI: 10.1145/3723872
Arjun Sriram Lakshmipathy, Jessica Hodgins, Nancy Pollard
{"title":"Kinematic Motion Retargeting for Contact-Rich Anthropomorphic Manipulations","authors":"Arjun Sriram Lakshmipathy, Jessica Hodgins, Nancy Pollard","doi":"10.1145/3723872","DOIUrl":"https://doi.org/10.1145/3723872","url":null,"abstract":"Hand motion capture data is now relatively easy to obtain, even for complicated grasps; however, this data is of limited use without the ability to retarget it onto the hands of a specific character or robot. The target hand may differ dramatically in geometry, number of degrees of freedom (DOFs), or number of fingers. We present a simple, but effective framework capable of kinematically retargeting human hand-object manipulations from a publicly available dataset to diverse target hands through the exploitation of contact areas. We do so by formulating the retargeting operation as a non-isometric shape matching problem and use a combination of both surface contact and marker data to progressively estimate, refine, and fit the final target hand trajectory using inverse kinematics (IK). Foundational to our framework is the introduction of a novel shape matching process, which we show enables predictable and robust transfer of contact data over full manipulations (pre-grasp, pickup, in-hand re-orientation, and release) while providing an intuitive means for artists to specify correspondences with relatively few inputs. We validate our framework through demonstrations across five different hands and six motions of different objects. We additionally demonstrate a bimanual task, perform stress tests, and compare our method against existing hand retargeting approaches. Finally, we demonstrate our method enabling novel capabilities such as object substitution and the ability to visualize the impact of hand design choices over full trajectories.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"59 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143631261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encoded Marker Clusters for Auto-Labeling in Optical Motion Capture 光学运动捕捉中自动标记的编码标记簇
IF 6.2 1区 计算机科学
ACM Transactions on Graphics Pub Date : 2025-02-10 DOI: 10.1145/3716847
Hao Wang, Taogang Hou, Tianhui Liu, Jiaxin Li, Tianmiao Wang
{"title":"Encoded Marker Clusters for Auto-Labeling in Optical Motion Capture","authors":"Hao Wang, Taogang Hou, Tianhui Liu, Jiaxin Li, Tianmiao Wang","doi":"10.1145/3716847","DOIUrl":"https://doi.org/10.1145/3716847","url":null,"abstract":"Marker-based optical motion capture (MoCap) is a vital tool in applications such as virtual production, and movement sciences. However, reconstructing scattered MoCap data into real motion sequences is challenging, and data processing is time-consuming and labor-intensive. Here we propose a novel framework for MoCap auto-labeling and matching. In this framework, we designed novel clusters of reflective markers called auto-labeling encoded marker clusters (AEMCs), including clusters with an explicit header (AEMCs-E) and an implicit header (AEMCs-I). Combining cluster design and coding theory gives each cluster a unique codeword for MoCap auto-labeling and matching. Moreover, we provide a method of mapping and decoding for cluster labeling. The labeling results are only determined by the intrinsic characteristics of the clusters instead of the skeleton structure or posture of the subjects. Compared with commercial software and data-driven methods, our method has better labeling accuracy in heterogeneous targets and unknown marker layouts, which demonstrates the promising application of motion capture in humans, rigid or flexible robots.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"86 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Rendering of Intrinsic Triangulations 直接渲染内在三角形
IF 6.2 1区 计算机科学
ACM Transactions on Graphics Pub Date : 2025-02-03 DOI: 10.1145/3716314
Waldemar Celes
{"title":"Direct Rendering of Intrinsic Triangulations","authors":"Waldemar Celes","doi":"10.1145/3716314","DOIUrl":"https://doi.org/10.1145/3716314","url":null,"abstract":"Existing intrinsic triangulation frameworks represent powerful tools for geometry processing; however, they all require the extraction of the common subdivision between extrinsic and intrinsic triangulations for visualization and optimized data transfer. We describe an efficient and effective algorithm for directly rendering intrinsic triangulations that avoids extracting common subdivisions. Our strategy is to use GPU shaders to render the intrinsic triangulation while rasterizing extrinsic triangles. We rely on a point-location algorithm supported by a compact data structure, which requires only two values per extrinsic triangle to represent the correspondence between extrinsic and intrinsic triangulations. This data structure is easier to maintain than previous proposals while supporting all the standard topological operations for improving the intrinsic mesh quality, such as edge flips, triangle refinements, and vertex displacements. Computational experiments show that the proposed data structure is numerically robust and can process nearly degenerate triangulations. We also propose a meshless strategy to accurately transfer data from intrinsic to extrinsic triangulations without relying on the extraction of common subdivisions.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"38 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143083145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Texture Size Reduction Through Symmetric Overlap and Texture Carving 通过对称重叠和纹理雕刻来减小纹理尺寸
IF 6.2 1区 计算机科学
ACM Transactions on Graphics Pub Date : 2025-01-25 DOI: 10.1145/3714408
Julian Knodt, Xifeng Gao
{"title":"Texture Size Reduction Through Symmetric Overlap and Texture Carving","authors":"Julian Knodt, Xifeng Gao","doi":"10.1145/3714408","DOIUrl":"https://doi.org/10.1145/3714408","url":null,"abstract":"Maintaining memory efficient 3D assets is critical for game development due to size constraints for applications, and runtime costs such as GPU data transfers. While most prior work on 3D modeling focuses on reducing triangle count, few works focus on reducing texture sizes. We propose an automatic approach to reduce the texture size for 3D models while maintaining the rendered appearance of the original input. The two core components of our approach are: (1) <jats:italic>Overlapping</jats:italic> identical UV charts and <jats:italic>folding</jats:italic> mirrored regions within charts through an optimal transport optimization, and (2) <jats:italic>Carving</jats:italic> redundant and void texels in a UV-aware and texture-aware way without inverting the UV mesh. The first component creates additional void space, while the second removes void space, and their combination can greatly increase texels utilized by the UV mesh at lower texture resolutions. Our method is robust and general, and can process a 3D model with arbitrary UV layout and multiple textures without modifying the 3D mesh. We evaluate our approach on 110 models from the Google Scanned Object dataset and 64 models from Sketchfab. Compared to other approaches, ours has on average 1-3 dB PSNR higher rendering similarity and reduces pixelation in visual comparisons.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"58 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Don't Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive Media 不要浪费你的高斯:用于建模和渲染散射和发射介质的体积射线追踪原语
IF 6.2 1区 计算机科学
ACM Transactions on Graphics Pub Date : 2025-01-21 DOI: 10.1145/3711853
Jorge Condor, Sebastien Speierer, Lukas Bode, Aljaz Bozic, Simon Green, Piotr Didyk, Adrian Jarabo
{"title":"Don't Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive Media","authors":"Jorge Condor, Sebastien Speierer, Lukas Bode, Aljaz Bozic, Simon Green, Piotr Didyk, Adrian Jarabo","doi":"10.1145/3711853","DOIUrl":"https://doi.org/10.1145/3711853","url":null,"abstract":"Efficient scene representations are essential for many computer graphics applications. A general unified representation that can handle both surfaces and volumes simultaneously, remains a research challenge. In this work we propose a compact and efficient alternative to existing volumetric representations for rendering such as voxel grids. Inspired by recent methods for scene reconstruction that leverage mixtures of 3D Gaussians to model radiance fields, we formalize and generalize the modeling of scattering and emissive media using mixtures of simple kernel-based volumetric primitives. We introduce closed-form solutions for transmittance and free-flight distance sampling for different kernels, and propose several optimizations to use our method efficiently within any off-the-shelf volumetric path tracer. We demonstrate our method in both forward and inverse rendering of complex scattering media. Furthermore, we adapt and showcase our method in radiance field optimization and rendering, providing additional flexibility compared to current state of the art given its ray-tracing formulation. We also introduce the Epanechnikov kernel and demonstrate its potential as an efficient alternative to the traditionally-used Gaussian kernel in scene reconstruction tasks. The versatility and physically-based nature of our approach allows us to go beyond radiance fields and bring to kernel-based modeling and rendering any path-tracing enabled functionality such as scattering, relighting and complex camera models.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"33 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implicit Bonded Discrete Element Method with Manifold Optimization 具有流形优化的隐式键合离散元法
IF 6.2 1区 计算机科学
ACM Transactions on Graphics Pub Date : 2025-01-09 DOI: 10.1145/3711852
Jia-Ming Lu, Geng-Chen Cao, Chenfeng Li, Shi-min Hu
{"title":"Implicit Bonded Discrete Element Method with Manifold Optimization","authors":"Jia-Ming Lu, Geng-Chen Cao, Chenfeng Li, Shi-min Hu","doi":"10.1145/3711852","DOIUrl":"https://doi.org/10.1145/3711852","url":null,"abstract":"This paper proposes a novel simulation approach that combines implicit integration with the Bonded Discrete Element Method (BDEM) to achieve faster, more stable and more accurate fracture simulation. The new method leverages the efficiency of implicit schemes in dynamic simulation and the versatility of BDEM in fracture modelling. Specifically, an optimization-based integrator for BDEM is introduced and combined with a manifold optimization approach to accelerate the solution process of the quaternion-constrained system. Our comparative experiments indicate that our method offers better scale consistency and more realistic collision effects than FEM and MPM fragmentation approaches. Additionally, our method achieves a computational speedup of 2.1 ∼ 9.8 times over explicit BDEM methods.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"20 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信