Pengju Qiao, Qi Wang, Yuchi Huo, Shiji Zhai, Zixuan Xie, Wei Hua, Hujun Bao, Tao Liu
{"title":"Neural Kernel Regression for Consistent Monte Carlo Denoising","authors":"Pengju Qiao, Qi Wang, Yuchi Huo, Shiji Zhai, Zixuan Xie, Wei Hua, Hujun Bao, Tao Liu","doi":"10.1145/3687949","DOIUrl":"https://doi.org/10.1145/3687949","url":null,"abstract":"Unbiased Monte Carlo path tracing that is extensively used in realistic rendering produces undesirable noise, especially with low samples per pixel (spp). Recently, several methods have coped with this problem by importing unbiased noisy images and auxiliary features to neural networks to either predict a fixed-sized kernel for convolution or directly predict the denoised result. Since it is impossible to produce arbitrarily high spp images as the training dataset, the network-based denoising fails to produce high-quality images under high spp. More specifically, network-based denoising is inconsistent and does not converge to the ground truth as the sampling rate increases. On the other hand, the post-correction estimators yield a blending coefficient for a pair of biased and unbiased images influenced by image errors or variances to ensure the consistency of the denoised image. As the sampling rate increases, the blending coefficient of the unbiased image converges to 1, that is, using the unbiased image as the denoised results. However, these estimators usually produce artifacts due to the difficulty of accurately predicting image errors or variances with low spp. To address the above problems, we take advantage of both kernel-predicting methods and post-correction denoisers. A novel kernel-based denoiser is proposed based on distribution-free kernel regression consistency theory, which does not explicitly combine the biased and unbiased results but constrain the kernel bandwidth to produce consistent results under high spp. Meanwhile, our kernel regression method explores bandwidth optimization in the robust auxiliary feature space instead of the noisy image space. This leads to consistent high-quality denoising at both low and high spp. Experiment results demonstrate that our method outperforms existing denoisers in accuracy and consistency.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"197 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annika Öhri, Aviv Segall, Jing Ren, Olga Sorkine-Hornung
{"title":"Chebyshev Parameterization for Woven Fabric Modeling","authors":"Annika Öhri, Aviv Segall, Jing Ren, Olga Sorkine-Hornung","doi":"10.1145/3687928","DOIUrl":"https://doi.org/10.1145/3687928","url":null,"abstract":"Distortion-minimizing surface parameterization is an essential step for computing 2D pieces necessary to fabricate a target 3D shape from flat material. Garment design and textile fabrication are a prominent application example. Common distortion measures quantify length, angle or area preservation in an isotropic manner, so that when applied to woven textile fabrication, they implicitly assume fabric behaves like paper, which is inextensible in all directions and does not permit shearing. However, woven fabric differs significantly from paper: it exhibits anisotropy along the yarn directions and allows for some degree of shearing. We propose a novel distortion energy based on Chebyshev nets that anisotropically penalizes shearing and stretching. Our energy formulation can be used as an optimization objective for surface parameterization and is simple to minimize via a local-global algorithm. We demonstrate its advantages in modeling nets or woven fabric behavior over the commonly used isotropic distortion energies.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"38 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inseo Jang, Soojin Choi, Seokhyeon Hong, Chaelin Kim, Junyong Noh
{"title":"Geometry-Aware Retargeting for Two-Skinned Characters Interaction","authors":"Inseo Jang, Soojin Choi, Seokhyeon Hong, Chaelin Kim, Junyong Noh","doi":"10.1145/3687962","DOIUrl":"https://doi.org/10.1145/3687962","url":null,"abstract":"Interactive motion between multiple characters is widely utilized in games and movies. However, the method for generating interactive motions considering the character's diverse mesh shape has yet to be studied. We propose a Spatio Cooperative Transformer (SCT) to retarget the interacting motions of two characters having arbitrary mesh connectivity. SCT predicts the residual of root position and joint rotations considering the shape difference between the source and target of interacting characters. In addition, we introduce an anchor loss function for SCT to maintain the geometric distance between the interacting characters when they are retargeted. We also propose a motion augmentation method with deformation-based adaptation to prepare a source-target paired dataset with an identical mesh connectivity for training. In experiments, our method achieved higher accuracy for semantic preservation and produced less artifacts of inter-penetration between the interacting characters for unseen characters and motions than the baselines. Moreover, we conducted a user evaluation using characters with various shapes, spanning low-to-high interaction levels to prove better semantic preservation of our method compared to previous studies.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"99 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiqi Li, Duowen Chen, Candong Lin, Jinyuan Liu, Bo Zhu
{"title":"Particle-Laden Fluid on Flow Maps","authors":"Zhiqi Li, Duowen Chen, Candong Lin, Jinyuan Liu, Bo Zhu","doi":"10.1145/3687916","DOIUrl":"https://doi.org/10.1145/3687916","url":null,"abstract":"We propose a novel framework for simulating ink as a particle-laden flow using particle flow maps. Our method addresses the limitations of existing flow-map techniques, which struggle with dissipative forces like viscosity and drag, thereby extending the application scope from solving the Euler equations to solving the Navier-Stokes equations with accurate viscosity and laden-particle treatment. Our key contribution lies in a coupling mechanism for two particle systems, coupling physical sediment particles and virtual flow-map particles on a background grid by solving a Poisson system. We implemented a novel path integral formula to incorporate viscosity and drag forces into the particle flow map process. Our approach enables state-of-the-art simulation of various particle-laden flow phenomena, exemplified by the bulging and breakup of suspension drop tails, torus formation, torus disintegration, and the coalescence of sedimenting drops. In particular, our method delivered high-fidelity ink diffusion simulations by accurately capturing vortex bulbs, viscous tails, fractal branching, and hierarchical structures.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"35 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ToonCrafter: Generative Cartoon Interpolation","authors":"Jinbo Xing, Hanyuan Liu, Menghan Xia, Yong Zhang, Xintao Wang, Ying Shan, Tien-Tsin Wong","doi":"10.1145/3687761","DOIUrl":"https://doi.org/10.1145/3687761","url":null,"abstract":"We introduce ToonCrafter, a novel approach that transcends traditional correspondence-based cartoon video interpolation, paving the way for generative interpolation. Traditional methods, that implicitly assume linear motion and the absence of complicated phenomena like dis-occlusion, often struggle with the exaggerated non-linear and large motions with occlusion commonly found in cartoons, resulting in implausible or even failed interpolation results. To overcome these limitations, we explore the potential of adapting live-action video priors to better suit cartoon interpolation within a generative framework. ToonCrafter effectively addresses the challenges faced when applying live-action video motion priors to generative cartoon interpolation. First, we design a toon rectification learning strategy that seamlessly adapts live-action video priors to the cartoon domain, resolving the domain gap and content leakage issues. Next, we introduce a dual-reference-based 3D decoder to compensate for lost details due to the highly compressed latent prior spaces, ensuring the preservation of fine details in interpolation results. Finally, we design a flexible sketch encoder that empowers users with interactive control over the interpolation results. Experimental results demonstrate that our proposed method not only produces visually convincing and more natural dynamics, but also effectively handles dis-occlusion. The comparative evaluation demonstrates the notable superiority of our approach over existing competitors. Code and model weights are available at https://doubiiu.github.io/projects/ToonCrafter","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"250 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes","authors":"Zehao Yu, Torsten Sattler, Andreas Geiger","doi":"10.1145/3687937","DOIUrl":"https://doi.org/10.1145/3687937","url":null,"abstract":"Recently, 3D Gaussian Splatting (3DGS) has demonstrated impressive novel view synthesis results, while allowing the rendering of high-resolution images in real-time. However, leveraging 3D Gaussians for surface reconstruction poses significant challenges due to the explicit and disconnected nature of 3D Gaussians. In this work, we present Gaussian Opacity Fields (GOF), a novel approach for efficient, high-quality, and adaptive surface reconstruction in unbounded scenes. Our GOF is derived from ray-tracing-based volume rendering of 3D Gaussians, enabling direct geometry extraction from 3D Gaussians by identifying its levelset, without resorting to Poisson reconstruction or TSDF fusion as in previous work. We approximate the surface normal of Gaussians as the normal of the ray-Gaussian intersection plane, enabling the application of regularization that significantly enhances geometry. Furthermore, we develop an efficient geometry extraction method utilizing Marching Tetrahedra, where the tetrahedral grids are induced from 3D Gaussians and thus adapt to the scene's complexity. Our evaluations reveal that GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis. Further, it compares favorably to or even outperforms, neural implicit methods in both quality and speed.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"33 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives","authors":"Jiadi Cui, Junming Cao, Fuqiang Zhao, Zhipeng He, Yifan Chen, Yuhui Zhong, Lan Xu, Yujiao Shi, Yingliang Zhang, Jingyi Yu","doi":"10.1145/3687762","DOIUrl":"https://doi.org/10.1145/3687762","url":null,"abstract":"Large garages are ubiquitous yet intricate scenes that present unique challenges due to their monotonous colors, repetitive patterns, reflective surfaces, and transparent vehicle glass. Conventional Structure from Motion (SfM) methods for camera pose estimation and 3D reconstruction often fail in these environments due to poor correspondence construction. To address these challenges, we introduce LetsGo, a LiDAR-assisted Gaussian splatting framework for large-scale garage modeling and rendering. We develop a handheld scanner, Polar, equipped with IMU, LiDAR, and a fisheye camera, to facilitate accurate data acquisition. Using this Polar device, we present the GarageWorld dataset, consisting of eight expansive garage scenes with diverse geometric structures, which will be made publicly available for further research. Our approach demonstrates that LiDAR point clouds collected by the Polar device significantly enhance a suite of 3D Gaussian splatting algorithms for garage scene modeling and rendering. We introduce a novel depth regularizer that effectively eliminates floating artifacts in rendered images. Additionally, we propose a multi-resolution 3D Gaussian representation designed for Level-of-Detail (LOD) rendering. This includes adapted scaling factors for individual levels and a random-resolution-level training scheme to optimize the Gaussians across different resolutions. This representation enables efficient rendering of large-scale garage scenes on lightweight devices via a web-based renderer. Experimental results on our GarageWorld dataset, as well as on ScanNet++ and KITTI-360, demonstrate the superiority of our method in terms of rendering quality and resource efficiency.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"55 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ELMO: Enhanced Real-time LiDAR Motion Capture through Upsampling","authors":"Deok-Kyeong Jang, Dongseok Yang, Deok-Yun Jang, Byeoli Choi, Sung-Hee Lee, Donghoon Shin","doi":"10.1145/3687991","DOIUrl":"https://doi.org/10.1145/3687991","url":null,"abstract":"This paper introduces ELMO, a real-time upsampling motion capture framework designed for a single LiDAR sensor. Modeled as a conditional autoregressive transformer-based upsampling motion generator, ELMO achieves 60 fps motion capture from a 20 fps LiDAR point cloud sequence. The key feature of ELMO is the coupling of the self-attention mechanism with thoughtfully designed embedding modules for motion and point clouds, significantly elevating the motion quality. To facilitate accurate motion capture, we develop a one-time skeleton calibration model capable of predicting user skeleton off-sets from a single-frame point cloud. Additionally, we introduce a novel data augmentation technique utilizing a LiDAR simulator, which enhances global root tracking to improve environmental understanding. To demonstrate the effectiveness of our method, we compare ELMO with state-of-the-art methods in both image-based and point cloud-based motion capture. We further conduct an ablation study to validate our design principles. ELMO's fast inference time makes it well-suited for real-time applications, exemplified in our demo video featuring live streaming and interactive gaming scenarios. Furthermore, we contribute a high-quality LiDAR-mocap synchronized dataset comprising 20 different subjects performing a range of motions, which can serve as a valuable resource for future research. The dataset and evaluation code are available at https://movin3d.github.io/ELMO_SIGASIA2024/","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"36 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Time-Dependent Inclusion-Based Method for Continuous Collision Detection between Parametric Surfaces","authors":"Xuwen Chen, Cheng Yu, Xingyu Ni, Mengyu Chu, Bin Wang, Baoquan Chen","doi":"10.1145/3687960","DOIUrl":"https://doi.org/10.1145/3687960","url":null,"abstract":"Continuous collision detection (CCD) between parametric surfaces is typically formulated as a five-dimensional constrained optimization problem. In the field of CAD and computer graphics, common approaches to solving this problem rely on linearization or sampling strategies. Alternatively, inclusion-based techniques detect collisions by employing 5D inclusion functions, which are typically designed to represent the swept volumes of parametric surfaces over a given time span, and narrowing down the earliest collision moment through subdivision in both spatial and temporal dimensions. However, when high detection accuracy is required, all these approaches significantly increases computational consumption due to the high-dimensional searching space. In this work, we develop a new time-dependent inclusion-based CCD framework that eliminates the need for temporal subdivision and can speedup conventional methods by a factor ranging from 36 to 138. To achieve this, we propose a novel time-dependent inclusion function that provides a continuous representation of a moving surface, along with a corresponding intersection detection algorithm that quickly identifies the time intervals when collisions are likely to occur. We validate our method across various primitive types, demonstrate its efficacy within the simulation pipeline and show that it significantly improves CCD efficiency while maintaining accuracy.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"6 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlie Hewitt, Fatemeh Saleh, Sadegh Aliakbarian, Lohit Petikam, Shideh Rezaeifar, Louis Florentin, Zafiirah Hosenie, Thomas J. Cashman, Julien Valentin, Darren Cosker, Tadas Baltrusaitis
{"title":"Look Ma, no markers: holistic performance capture without the hassle","authors":"Charlie Hewitt, Fatemeh Saleh, Sadegh Aliakbarian, Lohit Petikam, Shideh Rezaeifar, Louis Florentin, Zafiirah Hosenie, Thomas J. Cashman, Julien Valentin, Darren Cosker, Tadas Baltrusaitis","doi":"10.1145/3687772","DOIUrl":"https://doi.org/10.1145/3687772","url":null,"abstract":"We tackle the problem of highly-accurate, holistic performance capture for the face, body and hands simultaneously. Motion-capture technologies used in film and game production typically focus only on face, body or hand capture independently, involve complex and expensive hardware and a high degree of manual intervention from skilled operators. While machine-learning-based approaches exist to overcome these problems, they usually only support a single camera, often operate on a single part of the body, do not produce precise world-space results, and rarely generalize outside specific contexts. In this work, we introduce the first technique for markerfree, high-quality reconstruction of the complete human body, including eyes and tongue, without requiring any calibration, manual intervention or custom hardware. Our approach produces stable world-space results from arbitrary camera rigs as well as supporting varied capture environments and clothing. We achieve this through a hybrid approach that leverages machine learning models trained exclusively on synthetic data and powerful parametric models of human shape and motion. We evaluate our method on a number of body, face and hand reconstruction benchmarks and demonstrate state-of-the-art results that generalize on diverse datasets.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"13 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}