动态界面跟踪的神经粒子水平集方法

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Duowen Chen, Junwei Zhou, Bo Zhu
{"title":"动态界面跟踪的神经粒子水平集方法","authors":"Duowen Chen, Junwei Zhou, Bo Zhu","doi":"10.1145/3730399","DOIUrl":null,"url":null,"abstract":"We propose a neural particle level set (Neural PLS) method to accommodate tracking and evolving dynamic neural representations. At the heart of our approach is a set of oriented particles serving dual roles of interface trackers and sampling seeders. These dynamic particles are used to evolve the interface and construct neural representations on a multi-resolution grid-hash structure to hybridize coarse sparse distance fields and multi-scale feature encoding. Based on these parallel implementations and neural-network-friendly architectures, our neural particle level set method combines the computational merits on both ends of the traditional particle level sets and the modern implicit neural representations, in terms of feature representation and dynamic tracking. We demonstrate the efficacy of our approach by showcasing its performance surpassing traditional level-set methods in both benchmark tests and physical simulations.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"28 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Neural Particle Level Set Method for Dynamic Interface Tracking\",\"authors\":\"Duowen Chen, Junwei Zhou, Bo Zhu\",\"doi\":\"10.1145/3730399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a neural particle level set (Neural PLS) method to accommodate tracking and evolving dynamic neural representations. At the heart of our approach is a set of oriented particles serving dual roles of interface trackers and sampling seeders. These dynamic particles are used to evolve the interface and construct neural representations on a multi-resolution grid-hash structure to hybridize coarse sparse distance fields and multi-scale feature encoding. Based on these parallel implementations and neural-network-friendly architectures, our neural particle level set method combines the computational merits on both ends of the traditional particle level sets and the modern implicit neural representations, in terms of feature representation and dynamic tracking. We demonstrate the efficacy of our approach by showcasing its performance surpassing traditional level-set methods in both benchmark tests and physical simulations.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3730399\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3730399","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种神经粒子水平集(neural PLS)方法来适应跟踪和进化的动态神经表示。我们的方法的核心是一组定向粒子,充当界面跟踪器和采样播种器的双重角色。利用这些动态粒子对界面进行演化,并在多分辨率网格哈希结构上构建神经网络表示,实现粗稀疏距离场和多尺度特征编码的杂交。基于这些并行实现和神经网络友好的架构,我们的神经粒子水平集方法在特征表示和动态跟踪方面结合了传统粒子水平集和现代隐式神经表示的计算优点。我们通过在基准测试和物理模拟中展示其优于传统水平集方法的性能来证明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Neural Particle Level Set Method for Dynamic Interface Tracking
We propose a neural particle level set (Neural PLS) method to accommodate tracking and evolving dynamic neural representations. At the heart of our approach is a set of oriented particles serving dual roles of interface trackers and sampling seeders. These dynamic particles are used to evolve the interface and construct neural representations on a multi-resolution grid-hash structure to hybridize coarse sparse distance fields and multi-scale feature encoding. Based on these parallel implementations and neural-network-friendly architectures, our neural particle level set method combines the computational merits on both ends of the traditional particle level sets and the modern implicit neural representations, in terms of feature representation and dynamic tracking. We demonstrate the efficacy of our approach by showcasing its performance surpassing traditional level-set methods in both benchmark tests and physical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信