{"title":"动态界面跟踪的神经粒子水平集方法","authors":"Duowen Chen, Junwei Zhou, Bo Zhu","doi":"10.1145/3730399","DOIUrl":null,"url":null,"abstract":"We propose a neural particle level set (Neural PLS) method to accommodate tracking and evolving dynamic neural representations. At the heart of our approach is a set of oriented particles serving dual roles of interface trackers and sampling seeders. These dynamic particles are used to evolve the interface and construct neural representations on a multi-resolution grid-hash structure to hybridize coarse sparse distance fields and multi-scale feature encoding. Based on these parallel implementations and neural-network-friendly architectures, our neural particle level set method combines the computational merits on both ends of the traditional particle level sets and the modern implicit neural representations, in terms of feature representation and dynamic tracking. We demonstrate the efficacy of our approach by showcasing its performance surpassing traditional level-set methods in both benchmark tests and physical simulations.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"28 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Neural Particle Level Set Method for Dynamic Interface Tracking\",\"authors\":\"Duowen Chen, Junwei Zhou, Bo Zhu\",\"doi\":\"10.1145/3730399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a neural particle level set (Neural PLS) method to accommodate tracking and evolving dynamic neural representations. At the heart of our approach is a set of oriented particles serving dual roles of interface trackers and sampling seeders. These dynamic particles are used to evolve the interface and construct neural representations on a multi-resolution grid-hash structure to hybridize coarse sparse distance fields and multi-scale feature encoding. Based on these parallel implementations and neural-network-friendly architectures, our neural particle level set method combines the computational merits on both ends of the traditional particle level sets and the modern implicit neural representations, in terms of feature representation and dynamic tracking. We demonstrate the efficacy of our approach by showcasing its performance surpassing traditional level-set methods in both benchmark tests and physical simulations.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3730399\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3730399","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A Neural Particle Level Set Method for Dynamic Interface Tracking
We propose a neural particle level set (Neural PLS) method to accommodate tracking and evolving dynamic neural representations. At the heart of our approach is a set of oriented particles serving dual roles of interface trackers and sampling seeders. These dynamic particles are used to evolve the interface and construct neural representations on a multi-resolution grid-hash structure to hybridize coarse sparse distance fields and multi-scale feature encoding. Based on these parallel implementations and neural-network-friendly architectures, our neural particle level set method combines the computational merits on both ends of the traditional particle level sets and the modern implicit neural representations, in terms of feature representation and dynamic tracking. We demonstrate the efficacy of our approach by showcasing its performance surpassing traditional level-set methods in both benchmark tests and physical simulations.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.