{"title":"Effects of Strain and Strain Rates on Microstructure Evolution Within ASB of TC4","authors":"Qiang Zhou, Qilin Xiong, Zhaoquan Zeng","doi":"10.1007/s10338-024-00518-z","DOIUrl":"10.1007/s10338-024-00518-z","url":null,"abstract":"<div><p>Adiabatic shear band (ASB), a typical failure mechanism in a metal at high strain rates, is hardly controllable or predictable to some extent. The development of the microstructure plays a crucial role in its formation. In this paper, the effect of strain rate on the development of microstructure in ASB of titanium alloy TC4 is investigated using hat-shaped specimens with the split-Hopkinson pressure bar device. The results show that the fracture strength of TC4 is significantly dependent on the shear strain rate. The increase in fracture strength from a strain rate of 11,300 s<sup>−1</sup> to 24,930 s<sup>−1</sup> is much higher than that from 24,930 s<sup>−1</sup> to 35,620 s<sup>−1</sup>, which can be attributed to the effect of strain rate on dislocation evolution. Microstructures in both as-received and deformed states are investigated using various characterization techniques such as electron backscatter diffraction and X-ray diffraction. The region of ASB clearly shows three different microstructural features: random distribution of coarse grains (as received), distribution of elongated grains (transition zone), and distribution of equiaxed nanocrystals (shear-localized zone). The width of ASB increases with the strain rate. The possible reason for this is that the higher the strain rate, the larger the region where dynamic recrystallization (DRX) occurs due to the accumulation of a large number of dislocations. In the middle of ASB, a significant decrease in low-angle grain boundaries (LAGBs) and a large increase in high-angle grain boundaries are observed. The texture of specimens, especially the {11–20} and {10–10} planes, changes significantly during shear deformation at high strain rates. The mechanism of continuous dynamic recrystallization can well explain the formation and evolution of DRX within the ASB.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 6","pages":"958 - 966"},"PeriodicalIF":2.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coupled Thermo-Mechanical Peridynamics Simulation for Analyzing Failure of ECC Under High-Temperature Loads","authors":"Xihong Zhang, Keyan Li, Jiyu Tang, Zhanqi Cheng","doi":"10.1007/s10338-024-00502-7","DOIUrl":"10.1007/s10338-024-00502-7","url":null,"abstract":"<div><p>In this paper, the degradation of mechanical properties of engineering cementitious composites (ECCs) at elevated temperatures and the failure of fiber are considered. A failure model under coupled thermo-mechanical loads for ECC is developed based on bond-based peridynamics. A semi-discrete model is constructed to describe fiber–matrix interactions and simulate thermal failure in ECC. The peridynamic differential operator (PDDO) is utilized for non-local modeling of thermal fluid flow and heat transfer. A multi-rate explicit time integration method is adopted to address thermo-mechanical coupling over different time scales. Model validation is achieved through simulating transient heat transfer in a homogeneous plate, with results aligning with analytical solutions. The damage behavior of a heated ECC plate in a borehole and under a fire scenario is analyzed, providing insights for enhancing fire resistance and high-temperature performance of ECC materials and structures.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 6","pages":"932 - 957"},"PeriodicalIF":2.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuanshu Wei, Huimin Jing, Aibing Zhang, Bin Huang, Gamal M. Ismail, Ji Wang
{"title":"The Analysis of Bending of an Elastic Beam Resting on a Nonlinear Winkler Foundation with the Galerkin Method","authors":"Chuanshu Wei, Huimin Jing, Aibing Zhang, Bin Huang, Gamal M. Ismail, Ji Wang","doi":"10.1007/s10338-024-00515-2","DOIUrl":"10.1007/s10338-024-00515-2","url":null,"abstract":"<div><p>Elastic beams resting on an elastic foundation are frequently encountered in civil, mechanical, aeronautical, and other engineering disciplines, and the analysis of static and dynamic deflections is one of the essential requirements related to various applications. The Galerkin method is a classical mathematical method for solving differential equations without a closed-form solution with a wide range of applications in engineering and scientific fields. In this study, a demonstration is presented to solve the nonlinear differential equation by transforming it into a series of nonlinear algebraic equations with the Galerkin method for asymptotic solutions in series, and the nonlinear deformation of beams resting on the nonlinear foundation is successfully solved as an example. The approximate solutions based on trigonometric functions are utilized, and the nonlinear algebraic equations are solved both numerically and iteratively. Although widely used in linear problems, it is worth reminding that the Galerkin method also provides an effective approach in dealing with increasingly complex nonlinear equations in practical applications with the aid of powerful tools for symbolic manipulation of nonlinear algebraic equations.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 6","pages":"903 - 909"},"PeriodicalIF":2.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance and Stress Analysis of Flat-Tubular Solid Oxide Fuel Cells Fueled with Methane and Hydrogen","authors":"Chengrong Yu, Zhiyuan Guo, Zehua Pan, Yexin Zhou, Hongying Zhang, Bin Chen, Peng Tan, Wanbing Guan, Zheng Zhong","doi":"10.1007/s10338-024-00514-3","DOIUrl":"https://doi.org/10.1007/s10338-024-00514-3","url":null,"abstract":"<p>Solid oxide fuel cell (SOFC) is a promising power generation technology with high efficiency and can operate with a wide range of fuels. Although H<sub>2</sub> delivery and storage are still hurdles, natural gas is readily accessible through existing pipeline infrastructure and therefore stands as a viable fuel candidate for SOFC. Owing to the high operating temperature, the methane in natural gas can be directly reformed in the anode of an SOFC. However, mechanical failure remains a critical issue and hinders the prevalence of traditional planar SOFCs. A novel flat-tubular structure with symmetrical double-sided cathodes was previously proposed to improve mechanical durability. In this work, the performance of a methane-fueled SOFC with symmetrical double-sided cathodes is analyzed with a numerical multiphysics model. The distributions of different physical fields in the SOFC are investigated. Special attention is paid to stress analysis, which is closely related to the mechanical stability of an SOFC. Furthermore, the CH<sub>4</sub>-fueled and H<sub>2</sub>-fueled SOFCs are also compared in terms of the distribution of thermal stress. A lower first principal stress is observed for CH<sub>4</sub>-fueled flat-tubular SOFC, demonstrating a reduced probability of mechanical failures and potentially extended lifespan.</p>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"42 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scattering of Shear Horizontal (SH) Waves by a Circular Hole in an Infinite Piezomagnetic Material","authors":"Qiang Li, Chunlong Gu, Dongxia Lei, Zhiying Ou","doi":"10.1007/s10338-024-00508-1","DOIUrl":"10.1007/s10338-024-00508-1","url":null,"abstract":"<div><p>The scattering of shear horizontal (SH) waves by a circular hole in an infinite piezomagnetic medium affected by magnetic field and compressive stress has been investigated theoretically in this study. The effective elastic, piezomagnetic, and magnetic permeability constants of the piezomagnetic material change with the external magnetic field and compressive stress. The governing differential equations for SH waves scattered by a circular hole are solved using the wave function expansion method. The effects of the magnetic field and compressive stress on mechanical displacement, dynamic stress, and magnetic potential of SH waves around a circular hole are discussed in detail. It has been found that the mechanical displacement around the circular hole increases with magnetic field and decreases with compressive stress. As the magnetic field increases, the maximum dynamic stress increases and structural resonance is strengthened. The findings presented in this study are beneficial for improving the performance of magnetoelastic acoustic wave devices.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 6","pages":"891 - 902"},"PeriodicalIF":2.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sliding Electrical Contact Model Considering Frictional and Joule Heating","authors":"Hang-Cen Dai, Fei Shen, You-Hua Li, Liao-Liang Ke","doi":"10.1007/s10338-024-00511-6","DOIUrl":"10.1007/s10338-024-00511-6","url":null,"abstract":"<div><p>A theoretical model is developed to investigate the sliding electrical contact behavior with the consideration of the electrical-thermal–mechanical coupling effect. The interfacial electrical resistance and electrical constriction resistance are both involved. The Joule heating due to electrical contact resistance and the frictional energy dissipation are considered in the model for the assessment of the temperature rise at the contact interface. A singular integral equation for sliding electrical contact considering both frictional and Joule heat is developed and solved to obtain the contact pressure, current density, and temperature rise. Furthermore, a discrete fast Fourier transform-based boundary element method is applied to obtain the numerical solution of sliding electrical contact. Good agreement is achieved between theoretical and numerical results. After the validation, the effects of potential drop and sliding velocity on sliding electrical contact behavior are investigated. The results indicate that the proposed theoretical model can provide an exact prediction of multi-physics sliding electrical contact behavior.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 6","pages":"823 - 836"},"PeriodicalIF":2.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Two-Way FSI Model for Pathologic Respiratory Processes with Precisely Structured and Flexible Upper Airway","authors":"Yuan Qin, Honghao Zhang, Zhiwei Qiu, Lei Liu, Hui Yang, Jiutao Hang, Dong Wei, Guangkui Xu","doi":"10.1007/s10338-024-00510-7","DOIUrl":"10.1007/s10338-024-00510-7","url":null,"abstract":"<div><p>The human body displays various symptoms of altitude sickness due to hypoxia in environments with low pressure and oxygen levels. While existing studies are primarily focused on the adverse effects of hypoxia and oxygen supplementation strategies at high altitudes, there is a notable gap in understanding the fundamental mechanisms driving altitude hypoxia. In this context, we propose a sophisticated two-way fluid–structure interaction model that simulates respiratory processes with precisely structured and deformable upper airways. This model reveals that, under identical pressure differentials at the airway’s inlet and outlet, the inspiratory air volume remains largely consistent and is minimally affected by specific pressure changes. However, an increase in the pressure differential enhances gas inhalation efficiency. Furthermore, airway morphology emerges as a pivotal factor influencing oxygen intake. Distorted airway shapes create areas of high flow velocity, where low wall pressure hampers effective airway opening, thus diminishing gas inhalation. These results may shed light on the effects of low-pressure conditions and upper airway structure on respiratory dynamics at high altitudes and inform the development of effective oxygen supply strategies.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 6","pages":"910 - 918"},"PeriodicalIF":2.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiwen Gao, Yuhao Zhang, Juanjuan Guo, Hua Li, Bin Chen, Jizeng Wang
{"title":"A Numerical Model of Heating and Cooling Cycles to Study the Driven Response for Twisted and Coiled Polymer Actuator","authors":"Zhiwen Gao, Yuhao Zhang, Juanjuan Guo, Hua Li, Bin Chen, Jizeng Wang","doi":"10.1007/s10338-024-00512-5","DOIUrl":"10.1007/s10338-024-00512-5","url":null,"abstract":"<div><p>Twisted and coiled polymer actuator (TCPA) is a type of artificial muscle that can be driven by heating due to its structure. A key issue with TCPA performance is the low driven frequency due to slow heat transfer in heating and cooling cycles, especially during cooling. We developed a numerical model of coating heating and nitrogen gas cooling that can effectively improve the driven forces and frequencies of the TCPA. Results indicate that natural cooling and electric fan cooling modes used in many experiments cannot restore the TCPA to its initial configuration when driven frequencies are high. Nitrogen gas cooling, at high driven frequencies, can fully restore the TCPA to its initial configuration, which is crucial for maintaining artificial muscle flexibility. In addition, as driven frequency increases, the corresponding driven force decreases. Systematic parametric studies were carried out to provide inspirations for optimizing TCPA design. The integrative computational study presented here provides a fundamental mechanistic understanding of the driven response in TCPA and sheds light on the rational design of TCPA through changing cooling modes.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 6","pages":"837 - 843"},"PeriodicalIF":2.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei Chen, Xiaofei Zhao, Zhifeng Huang, Jun Lei, Chi Zhang, Pin Wen
{"title":"Bending and Vibration Analysis of Trigonometric Varying Functionally Graded Material via a Novel Third-Order Shear Deformation Theory","authors":"Fei Chen, Xiaofei Zhao, Zhifeng Huang, Jun Lei, Chi Zhang, Pin Wen","doi":"10.1007/s10338-024-00507-2","DOIUrl":"10.1007/s10338-024-00507-2","url":null,"abstract":"<div><p>Given the significant potential of multi-directional functionally graded materials (MFGMs) for customizable performance, it is crucial to develop versatile material models to enhance design optimization in engineering applications. This paper introduces a material model for an MFGM plate described by trigonometric functions, equipped with four parameters to control diverse material distributions effectively. The bending and vibration analysis of MFGM rectangular and cutout plates is carried out utilizing isogeometric analysis, which is based on a novel third-order shear deformation theory (TSDT) to account for transverse shear deformation. The present TSDT, founded on rigorous kinematics of displacements, is demonstrated to surpass other preceding theories. It is derived from an elasticity formulation, rather than relying on the hypothesis of displacements. The effectiveness of the proposed method is verified by comparing its numerical results with those of other methods reported in the relevant literature. Numerical results indicate that the structure, boundary conditions, and gradient parameters of the MFGM plate significantly influence its deflection, stress, and vibration frequency. As the periodic parameter exceeds four, the model complexity increases, causing result fluctuations. Additionally, MFGM cutout plates, when clamped on all sides, display almost identical first four vibration frequencies.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 6","pages":"919 - 931"},"PeriodicalIF":2.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applying the Infrared Self-heating Method to a Comprehensive Fatigue Analysis of NiTi Shape Memory Alloys","authors":"Yongdan Zhou, Zihong Liu, Yahui Zhang, Xiaojun Gu, Jihong Zhu, Weihong Zhang","doi":"10.1007/s10338-024-00513-4","DOIUrl":"10.1007/s10338-024-00513-4","url":null,"abstract":"<div><p>This paper aims to seek expedited fatigue analysis methods using the infrared self-heating technique. The fatigue analysis of NiTi shape memory alloys is obtained through a hybrid approach: fatigue tests to failure yield relatively shorter fatigue lives, while determining the fatigue limit, normally involving extremely high cycles approaching 10<sup>7</sup> cycles, is directly achieved via self-heating tests. This methodology significantly reduces testing cycles, costing only a fraction of the several-thousand-cycle tests typically required. The validity of this approach is successfully demonstrated through fatigue testing of 18Ni steel: the entire S–N curve is examined using the traditional fatigue test until a life of up to 10<sup>7</sup> cycles, and the indicated fatigue limit agrees well with the one directly determined through the self-heating method. Subsequently, this developed approach is applied to the fatigue analysis of shape memory alloys under complex loading, enabling the concurrent estimation of the limits of phase transformation-dominated low-cycle fatigue and high-cycle fatigue in the elastic regime on a single specimen. The results obtained align well with other supporting evidence.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 6","pages":"873 - 880"},"PeriodicalIF":2.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}