基于有效配置元微分法的压电材料断裂力学分析

IF 2.7 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jun Lv, Yi Yang, Miao Cui, Huayu Liu, Bingbing Xu, Xiaowei Gao
{"title":"基于有效配置元微分法的压电材料断裂力学分析","authors":"Jun Lv,&nbsp;Yi Yang,&nbsp;Miao Cui,&nbsp;Huayu Liu,&nbsp;Bingbing Xu,&nbsp;Xiaowei Gao","doi":"10.1007/s10338-024-00566-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel element differential method for modeling cracks in piezoelectric materials, aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately. The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface, aligning internal nodes with piezoelectric governing equations without needing integration or variational principles. It combines the strengths of the strong form collocation and finite element methods. The J-integral is derived analytically using the equivalent domain integral method, employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems. The accuracy of the method is validated through comparison with three typical examples, and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"38 4","pages":"701 - 712"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture Mechanics Analysis of Piezoelectric Materials Using an Efficient Collocation Element Differential Method\",\"authors\":\"Jun Lv,&nbsp;Yi Yang,&nbsp;Miao Cui,&nbsp;Huayu Liu,&nbsp;Bingbing Xu,&nbsp;Xiaowei Gao\",\"doi\":\"10.1007/s10338-024-00566-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a novel element differential method for modeling cracks in piezoelectric materials, aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately. The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface, aligning internal nodes with piezoelectric governing equations without needing integration or variational principles. It combines the strengths of the strong form collocation and finite element methods. The J-integral is derived analytically using the equivalent domain integral method, employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems. The accuracy of the method is validated through comparison with three typical examples, and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"38 4\",\"pages\":\"701 - 712\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-024-00566-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00566-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新型的压电材料裂纹单元微分建模方法,旨在模拟压电材料的断裂行为并准确预测断裂参数j积分。该方法利用一种有效的配点技术来满足裂纹表面的牵引平衡和电荷平衡,使内部节点与压电控制方程对齐,而不需要积分或变分原理。它结合了强形式搭配法和有限元法的优点。采用等效域积分法,利用格林公式和高斯散度定理将线积分转化为面积积分,解析导出了二维压电材料问题的j积分。通过三个典型实例的对比,验证了该方法的准确性,并为工程压电结构在不同电载荷模式下的断裂预防策略提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fracture Mechanics Analysis of Piezoelectric Materials Using an Efficient Collocation Element Differential Method

Fracture Mechanics Analysis of Piezoelectric Materials Using an Efficient Collocation Element Differential Method

Fracture Mechanics Analysis of Piezoelectric Materials Using an Efficient Collocation Element Differential Method

This paper presents a novel element differential method for modeling cracks in piezoelectric materials, aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately. The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface, aligning internal nodes with piezoelectric governing equations without needing integration or variational principles. It combines the strengths of the strong form collocation and finite element methods. The J-integral is derived analytically using the equivalent domain integral method, employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems. The accuracy of the method is validated through comparison with three typical examples, and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信