Jia Chang, Le Yang, Peng Wang, Wei-Li Song, Yana Wang
{"title":"Mechano-electrochemical Coupling Deformation in Layered Electrode Materials: A Review of Current Research and Future Directions","authors":"Jia Chang, Le Yang, Peng Wang, Wei-Li Song, Yana Wang","doi":"10.1007/s10338-024-00568-3","DOIUrl":null,"url":null,"abstract":"<div><p>Layered materials, such as graphite and molybdenum disulfide, are promising for electrode materials and microelectronic devices due to their excellent ion-intercalating properties. However, the intercalation and de-intercalation of ions, causing structural deformation and material property variations, would affect battery performance and alter external field responses. The complex problem coupling multiphysics is significant for study and poses a crucial research challenge. This paper reviews the coupling between mechanics, electrochemistry, and electrics during the reaction process, including in situ experimental characterization, theoretical modeling, and design considerations at various scales. Current research has focused on experimental observations beyond the nanoscale and continuum phenomenological models. Further advancements in characterizing layered structural evolution, electron cloud interactions at the atomic level, and developing physics-based multi-field models are essential.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"38 3","pages":"358 - 368"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00568-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Layered materials, such as graphite and molybdenum disulfide, are promising for electrode materials and microelectronic devices due to their excellent ion-intercalating properties. However, the intercalation and de-intercalation of ions, causing structural deformation and material property variations, would affect battery performance and alter external field responses. The complex problem coupling multiphysics is significant for study and poses a crucial research challenge. This paper reviews the coupling between mechanics, electrochemistry, and electrics during the reaction process, including in situ experimental characterization, theoretical modeling, and design considerations at various scales. Current research has focused on experimental observations beyond the nanoscale and continuum phenomenological models. Further advancements in characterizing layered structural evolution, electron cloud interactions at the atomic level, and developing physics-based multi-field models are essential.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables