{"title":"表征交错壳尺寸效应和粘弹性的跨尺度剪切滞后模型","authors":"Zhongya Lin, Kuanjie Ding, Hansong Ma, Yueguang Wei","doi":"10.1007/s10338-024-00572-7","DOIUrl":null,"url":null,"abstract":"<div><p>Natural biomaterials with staggered structures exhibit remarkable mechanical properties owing to their unique microstructure. The microstructural arrangement can induce size-dependent and viscoelastic responses within the material. This study proposes a strain gradient viscoelastic shear-lag model to elucidate the intricate interplay between the strain gradient and viscoelastic effect in staggered shells. Our model clarifies the role of both effects, as experimentally observed, in governing the mechanical properties of these biomaterials. A detailed characterization of the size-dependent responses is conducted through the utilization of a microstructural characterization parameter alongside viscoelastic constitutive models. Then, the effective modulus of the staggered shell is defined and its formula is derived through the Laplace transform. Compared to classical models and even the strain gradient elastic model, the strain gradient viscoelastic model offers calculated moduli that are more consistent with experimental data. Moreover, the strengthening-softening effect of staggered structures is predicted using the strain gradient viscoelastic model and critical energy principle. This study contributes significantly to our understanding of the mechanical behavior of structural materials. Additionally, it provides insights for the design of advanced bionic materials with tailored properties.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"38 5","pages":"749 - 763"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Trans-scale Shear-lag Model for Characterizing the Size Effect and Viscoelasticity of Staggered Shells\",\"authors\":\"Zhongya Lin, Kuanjie Ding, Hansong Ma, Yueguang Wei\",\"doi\":\"10.1007/s10338-024-00572-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Natural biomaterials with staggered structures exhibit remarkable mechanical properties owing to their unique microstructure. The microstructural arrangement can induce size-dependent and viscoelastic responses within the material. This study proposes a strain gradient viscoelastic shear-lag model to elucidate the intricate interplay between the strain gradient and viscoelastic effect in staggered shells. Our model clarifies the role of both effects, as experimentally observed, in governing the mechanical properties of these biomaterials. A detailed characterization of the size-dependent responses is conducted through the utilization of a microstructural characterization parameter alongside viscoelastic constitutive models. Then, the effective modulus of the staggered shell is defined and its formula is derived through the Laplace transform. Compared to classical models and even the strain gradient elastic model, the strain gradient viscoelastic model offers calculated moduli that are more consistent with experimental data. Moreover, the strengthening-softening effect of staggered structures is predicted using the strain gradient viscoelastic model and critical energy principle. This study contributes significantly to our understanding of the mechanical behavior of structural materials. Additionally, it provides insights for the design of advanced bionic materials with tailored properties.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"38 5\",\"pages\":\"749 - 763\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-024-00572-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00572-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A Trans-scale Shear-lag Model for Characterizing the Size Effect and Viscoelasticity of Staggered Shells
Natural biomaterials with staggered structures exhibit remarkable mechanical properties owing to their unique microstructure. The microstructural arrangement can induce size-dependent and viscoelastic responses within the material. This study proposes a strain gradient viscoelastic shear-lag model to elucidate the intricate interplay between the strain gradient and viscoelastic effect in staggered shells. Our model clarifies the role of both effects, as experimentally observed, in governing the mechanical properties of these biomaterials. A detailed characterization of the size-dependent responses is conducted through the utilization of a microstructural characterization parameter alongside viscoelastic constitutive models. Then, the effective modulus of the staggered shell is defined and its formula is derived through the Laplace transform. Compared to classical models and even the strain gradient elastic model, the strain gradient viscoelastic model offers calculated moduli that are more consistent with experimental data. Moreover, the strengthening-softening effect of staggered structures is predicted using the strain gradient viscoelastic model and critical energy principle. This study contributes significantly to our understanding of the mechanical behavior of structural materials. Additionally, it provides insights for the design of advanced bionic materials with tailored properties.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables