基于可编程机械变形的nurbs手性超材料机器学习反设计

IF 2.7 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiuhui Hou, Wenhao Zhao, Kai Zhang, Zichen Deng
{"title":"基于可编程机械变形的nurbs手性超材料机器学习反设计","authors":"Xiuhui Hou,&nbsp;Wenhao Zhao,&nbsp;Kai Zhang,&nbsp;Zichen Deng","doi":"10.1007/s10338-024-00569-2","DOIUrl":null,"url":null,"abstract":"<div><p>Chiral metamaterials are manmade structures with extraordinary mechanical properties derived from their special geometric design instead of chemical composition. To make the mechanical deformation programmable, the non-uniform rational B-spline (NURBS) curves are taken to replace the traditional ligament boundaries of the chiral structure. The Neural networks are innovatively inserted into the calculation of mechanical properties of the chiral structure instead of finite element methods to improve computational efficiency. For the problem of finding structure configuration with specified mechanical properties, such as Young’s modulus, Poisson’s ratio or deformation, an inverse design method using the Neural network-based proxy model is proposed to build the relationship between mechanical properties and geometric configuration. To satisfy some more complex deformation requirements, a non-homogeneous inverse design method is proposed and verified through simulation and experiments. Numerical and test results reveal the high computational efficiency and accuracy of the proposed method in the design of chiral metamaterials.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"38 5","pages":"739 - 748"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Design of a NURBS-Based Chiral Metamaterial Via Machine Learning for Programmable Mechanical Deformation\",\"authors\":\"Xiuhui Hou,&nbsp;Wenhao Zhao,&nbsp;Kai Zhang,&nbsp;Zichen Deng\",\"doi\":\"10.1007/s10338-024-00569-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chiral metamaterials are manmade structures with extraordinary mechanical properties derived from their special geometric design instead of chemical composition. To make the mechanical deformation programmable, the non-uniform rational B-spline (NURBS) curves are taken to replace the traditional ligament boundaries of the chiral structure. The Neural networks are innovatively inserted into the calculation of mechanical properties of the chiral structure instead of finite element methods to improve computational efficiency. For the problem of finding structure configuration with specified mechanical properties, such as Young’s modulus, Poisson’s ratio or deformation, an inverse design method using the Neural network-based proxy model is proposed to build the relationship between mechanical properties and geometric configuration. To satisfy some more complex deformation requirements, a non-homogeneous inverse design method is proposed and verified through simulation and experiments. Numerical and test results reveal the high computational efficiency and accuracy of the proposed method in the design of chiral metamaterials.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"38 5\",\"pages\":\"739 - 748\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-024-00569-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00569-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

手性超材料是由其特殊的几何设计而非化学成分而产生的具有非凡机械性能的人造结构。为了使机械变形可编程,采用非均匀有理b样条(NURBS)曲线代替传统的手性结构韧带边界。创新性地将神经网络引入手性结构力学性能的计算中,取代了传统的有限元方法,提高了计算效率。针对寻找具有杨氏模量、泊松比或变形等特定力学性能的结构构型问题,提出了一种基于神经网络的代理模型反设计方法,建立了力学性能与几何构型之间的关系。为满足较为复杂的变形要求,提出了一种非均匀反设计方法,并通过仿真和实验进行了验证。数值和试验结果表明,该方法在手性超材料设计中具有较高的计算效率和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Design of a NURBS-Based Chiral Metamaterial Via Machine Learning for Programmable Mechanical Deformation

Chiral metamaterials are manmade structures with extraordinary mechanical properties derived from their special geometric design instead of chemical composition. To make the mechanical deformation programmable, the non-uniform rational B-spline (NURBS) curves are taken to replace the traditional ligament boundaries of the chiral structure. The Neural networks are innovatively inserted into the calculation of mechanical properties of the chiral structure instead of finite element methods to improve computational efficiency. For the problem of finding structure configuration with specified mechanical properties, such as Young’s modulus, Poisson’s ratio or deformation, an inverse design method using the Neural network-based proxy model is proposed to build the relationship between mechanical properties and geometric configuration. To satisfy some more complex deformation requirements, a non-homogeneous inverse design method is proposed and verified through simulation and experiments. Numerical and test results reveal the high computational efficiency and accuracy of the proposed method in the design of chiral metamaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信