{"title":"Dynamic Response of Fractional-Order Viscoelastic High-Order Shear Beam Based on Nonlocal Strain Gradient Elasticity","authors":"Yuqian Xu, Peijun Wei","doi":"10.1007/s10338-023-00428-6","DOIUrl":"10.1007/s10338-023-00428-6","url":null,"abstract":"<div><p>The dynamic behavior of a viscoelastic high-order shear microbeam is studied based on a new constitutive model which incorporates size effects and viscoelasticity simultaneously. The size effects are modeled by the nonlocal gradient elasticity, while viscoelastic effects are modeled by fractional-order derivatives. The constitutive relation and the equations of motion are both differential equations with fractional-order derivatives. Based on the Laplace transform and inverse transform, the analytical solution of the dynamic response under a step load is obtained in terms of the Mittag–Leffler function. In order to verify the reliability of the analytical solution, a comparison with the numerical solution is also provided. Based on the numerical results, the effects of the nonlocal parameter, strain gradient parameter, fractional-order parameter, and viscosity coefficient on the dynamic response of the viscoelastic microbeam are discussed. It is found that the influences of the fractional order and the coefficient of viscosity on the dynamic response of the microbeam are very different, although both are related to the viscoelastic behavior.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135995302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peng Xu, Qifeng Peng, Fusong Jin, Jianghong Xue, Hong Yuan
{"title":"Theoretical and Experimental Study on Tension–Torsion Coupling Vibration for Time-Varying Elevator Traction System","authors":"Peng Xu, Qifeng Peng, Fusong Jin, Jianghong Xue, Hong Yuan","doi":"10.1007/s10338-023-00429-5","DOIUrl":"10.1007/s10338-023-00429-5","url":null,"abstract":"<div><p>Elevators used in ultra-high buildings are prone to vibrating due to their ultra-long traction ropes, which significantly affects the comfort and safety of high-speed elevators. Therefore, vibration of the elevator has always been a topic of research interest. This paper presents a theoretical model for analyzing the tension–torsion coupling vibration of the time-varying elevator traction system. The constitutive relations with the tension–torsion coupling effect of the wire rope are reduced by analyzing the deformation mechanism of the spiral winding wire rope. Based on Hamilton’s principle, the equations of motion and corresponding boundary conditions for the tension–torsion coupling vibration of the elevator traction system are derived. The Galerkin method is employed to account for the influence of nonlinear boundary conditions and to transform the equations of motion into discrete ones with variable coefficients of time, which are solved using the Newmark-β method. The accuracy of the proposed model is justified by the good agreement between theoretical predictions and experimental results, following which, the influence of the operation status and structural parameters of the elevator traction system on its vibration performance is discussed in detail.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136033600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear Vibration Isolation of Spacecraft System by a Bionic Variable-Stiffness Device Enhanced by Electromagnetic Component","authors":"Zeyu Chai, Xuyuan Song, Jian Zang, Yewei Zhang","doi":"10.1007/s10338-023-00431-x","DOIUrl":"10.1007/s10338-023-00431-x","url":null,"abstract":"<div><p>This study addresses the modified bionic vibration isolation technology by introducing the electromagnetic system to simulate biological damping characteristics. It has been proven effective in improving the vibration environment. By assuming the spacecraft-adapter system as a two-degree-of-freedom system, an excellent simplified model can be derived. The novel bionic vibration isolation device (ABVS-EMVI), which combines an active bionic variable-stiffness device (ABVSVI) with the electromagnetic system, is proposed for the purpose of isolating vibration and harvesting energy at the same time. The dynamic equations of the spacecraft-adapter system with ABVS-EMVI are obtained using the Taylor expansion within the framework of the Lagrange equation, and the harmonic balance method is introduced to acquire the amplitude and voltage response of the system. The results indicate that the electromagnetic system can enhance the vibration isolation performance and provide energy harvesting capabilities. After confirming the ability of ABVS-EMVI to deal with different forms and amplitudes of excitation, the performance of vibration isolation and energy harvesting is investigated in terms of various parameters, and several new conclusions have been drawn.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136113865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Design of Tunable Band Gaps in Anti-tetrachiral Structures Based on Shape Memory Alloy","authors":"Zhuxin Mao, Shutian Liu","doi":"10.1007/s10338-023-00426-8","DOIUrl":"10.1007/s10338-023-00426-8","url":null,"abstract":"<div><p>Benefitted from the properties of band gaps, elastic metamaterials (EMs) have attracted extensive attention in vibration and noise reduction. However, the width and position of band gaps are fixed once the traditional structures are manufactured. It is difficult to adapt to complex and changeable service conditions. Therefore, research on intelligent tunable band gaps is of great importance and has become a hot issue in EMs. To achieve smart control of band gaps, a design of tunable band gaps in anti-tetrachiral structures based on shape memory alloy (SMA) is proposed in this paper. By governing the phase transition process of SMA, the geometric configuration and material properties of structures can be changed, resulting in tunable band gaps. Therein, the energy band structures and generation mechanism of tunable band gaps in different states are studied, realizing intelligent manipulation of elastic waves. In addition, the influence of different geometric parameters on band gaps is investigated, and the desired bandgap position can be customized, making bandgap control more flexible. In summary, the proposed SMA-based anti-tetrachiral metamaterial provides valuable reference for the application of SMA materials and the development of EMs.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10338-023-00426-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135537651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shock Characteristics and Protective Design of Equipment During Spacecraft Docking Process","authors":"Xu Gao, Xianxian He, Yingying Wu, Yifeng Dong, Jiajing Huo, Ying Li","doi":"10.1007/s10338-023-00427-7","DOIUrl":"10.1007/s10338-023-00427-7","url":null,"abstract":"<div><p>The shock loads generated by spacecraft during docking can cause functional failure and structural damage to aerospace electronic equipment and even lead to catastrophic flight accidents. There is currently a lack of systematic and comprehensive research on the shock environment of spacecraft electronic equipment due to the diversity and complexity of the shock environment. In this paper, the validity of the finite element model is verified based on the sinusoidal vibration experiment results of the spacecraft reentry capsule. The method of shock dynamic response analysis is used to obtain the shock environment of electronic equipment under different shock loads. The shock response spectrum is used to describe the shock environment of aerospace electronic equipment. The results show that the resonance frequency error between the sinusoidal vibration experiment and the model is less than 4.06%. When the docking relative speed of the reentry capsule is 2 m/s, the shock response spectrum values of one of the equipment are 30 m<sup>2</sup>/s, 0.67 m/s, and 0.059 m, respectively. The wire rope spring on the mating surface can provide vibration isolation and shock resistance. An increase in spring damping coefficient results in a decrease in the amplitude and time of the vibration generated. An increase in spring stiffness reduces the input of shock load within a certain range. These research results can provide guidance for the design and evaluation of shock environmental adaptability of aerospace electronic equipment.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136154824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear Bifurcation and Post-buckling Analysis of Cylindrical Composite Stiffened Laminates Based on Weak Form Quadrature Element Method","authors":"Xiang Ou, Xiaohu Yao, Run Zhang","doi":"10.1007/s10338-023-00424-w","DOIUrl":"10.1007/s10338-023-00424-w","url":null,"abstract":"<div><p>This paper presents a weak form quadrature element formulation in the analysis of nonlinear bifurcation and post-buckling of cylindrical composite stiffened laminates subjected to transverse loads. A total Lagrangian updating scheme is used in combination with arc-length method, and the branch-switching method is adopted to identify the whole post-buckling procedure of the laminates. The formulation of the shell model and beam model are based on the basic concept of Ahmad. The coincidence of discrete nodes and integration points in quadrature element endows it with compactness and conciseness in the nonlinear buckling analysis of the cylindrical stiffened laminates. Several numerical examples are firstly presented to verify the effectiveness and accuracy of present formulation. Parametric studies on the effects of the height-to-breadth ratio, lamination schemes, positions, distribution, number of the stiffeners on the bifurcation and post-buckling behavior are performed.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135153694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Du-min Kuang, Zhi-lin Long, Rui-qi Guo, Piao-yi Yu, Xudong Zhou, Jie Wang
{"title":"Numerical Investigation of the Cushion and Size Effects During Single-Particle Crushing via DEM","authors":"Du-min Kuang, Zhi-lin Long, Rui-qi Guo, Piao-yi Yu, Xudong Zhou, Jie Wang","doi":"10.1007/s10338-020-00191-y","DOIUrl":"https://doi.org/10.1007/s10338-020-00191-y","url":null,"abstract":"","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10338-020-00191-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52123415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Songjiang Lu, Jian Xiong, Dean Wei, Y. Ding, Bo Zhang, Ronghai Wu, Xu Zhang
{"title":"Effect of Dislocation Mechanism on Elastoplastic Behavior of Crystals with Heterogeneous Dislocation Distribution","authors":"Songjiang Lu, Jian Xiong, Dean Wei, Y. Ding, Bo Zhang, Ronghai Wu, Xu Zhang","doi":"10.1007/s10338-020-00160-5","DOIUrl":"https://doi.org/10.1007/s10338-020-00160-5","url":null,"abstract":"","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10338-020-00160-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52123158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling and Stability Analysis of a Flexible Rotor Based on the Timoshenko Beam Theory","authors":"Yongwang Zhang, Xiaodong Yang, W. Zhang","doi":"10.1007/s10338-019-00146-y","DOIUrl":"https://doi.org/10.1007/s10338-019-00146-y","url":null,"abstract":"","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2019-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10338-019-00146-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52123002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minimum Control Energy of Spatial Beam with Assumed Attitude Adjustment Target","authors":"Weipeng Hu, Lingjun Yu, Z. Deng","doi":"10.1007/s10338-019-00132-4","DOIUrl":"https://doi.org/10.1007/s10338-019-00132-4","url":null,"abstract":"","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10338-019-00132-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52123243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}