{"title":"The Method of Polynomial Particular Solutions for Solving Nonlinear Poisson-Type Equations","authors":"Zhile Jia, Yanhua Cao, Xiaoran Wu","doi":"10.1007/s10338-023-00440-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the method of polynomial particular solutions is used to solve nonlinear Poisson-type partial differential equations in one, two, and three dimensions. The condition number of the coefficient matrix is reduced through the implementation of multiple scale technique, ultimately yielding a stable numerical solution. The methodological process can be divided into two main parts: first, identifying the corresponding polynomial particular solutions for the linear differential operator terms in the governing equations, and second, employing these polynomial particular solutions as basis function to iteratively solve the remaining nonlinear terms within the governing equations. Additionally, we investigate the potential improvement in numerical accuracy for equations with singularities in the analytical solution by shifting the computational domain a certain distance. Numerical experiments are conducted to assess both the accuracy and stability of the proposed method. A comparison of the obtained results with those produced by other numerical methods demonstrates the accuracy, stability, and efficiency of the proposed method in handling nonlinear Poisson-type partial differential equations.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 1","pages":"155 - 165"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-023-00440-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the method of polynomial particular solutions is used to solve nonlinear Poisson-type partial differential equations in one, two, and three dimensions. The condition number of the coefficient matrix is reduced through the implementation of multiple scale technique, ultimately yielding a stable numerical solution. The methodological process can be divided into two main parts: first, identifying the corresponding polynomial particular solutions for the linear differential operator terms in the governing equations, and second, employing these polynomial particular solutions as basis function to iteratively solve the remaining nonlinear terms within the governing equations. Additionally, we investigate the potential improvement in numerical accuracy for equations with singularities in the analytical solution by shifting the computational domain a certain distance. Numerical experiments are conducted to assess both the accuracy and stability of the proposed method. A comparison of the obtained results with those produced by other numerical methods demonstrates the accuracy, stability, and efficiency of the proposed method in handling nonlinear Poisson-type partial differential equations.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables