求解非线性泊松类方程的多项式特定解法

IF 2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhile Jia, Yanhua Cao, Xiaoran Wu
{"title":"求解非线性泊松类方程的多项式特定解法","authors":"Zhile Jia,&nbsp;Yanhua Cao,&nbsp;Xiaoran Wu","doi":"10.1007/s10338-023-00440-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the method of polynomial particular solutions is used to solve nonlinear Poisson-type partial differential equations in one, two, and three dimensions. The condition number of the coefficient matrix is reduced through the implementation of multiple scale technique, ultimately yielding a stable numerical solution. The methodological process can be divided into two main parts: first, identifying the corresponding polynomial particular solutions for the linear differential operator terms in the governing equations, and second, employing these polynomial particular solutions as basis function to iteratively solve the remaining nonlinear terms within the governing equations. Additionally, we investigate the potential improvement in numerical accuracy for equations with singularities in the analytical solution by shifting the computational domain a certain distance. Numerical experiments are conducted to assess both the accuracy and stability of the proposed method. A comparison of the obtained results with those produced by other numerical methods demonstrates the accuracy, stability, and efficiency of the proposed method in handling nonlinear Poisson-type partial differential equations.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 1","pages":"155 - 165"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Method of Polynomial Particular Solutions for Solving Nonlinear Poisson-Type Equations\",\"authors\":\"Zhile Jia,&nbsp;Yanhua Cao,&nbsp;Xiaoran Wu\",\"doi\":\"10.1007/s10338-023-00440-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the method of polynomial particular solutions is used to solve nonlinear Poisson-type partial differential equations in one, two, and three dimensions. The condition number of the coefficient matrix is reduced through the implementation of multiple scale technique, ultimately yielding a stable numerical solution. The methodological process can be divided into two main parts: first, identifying the corresponding polynomial particular solutions for the linear differential operator terms in the governing equations, and second, employing these polynomial particular solutions as basis function to iteratively solve the remaining nonlinear terms within the governing equations. Additionally, we investigate the potential improvement in numerical accuracy for equations with singularities in the analytical solution by shifting the computational domain a certain distance. Numerical experiments are conducted to assess both the accuracy and stability of the proposed method. A comparison of the obtained results with those produced by other numerical methods demonstrates the accuracy, stability, and efficiency of the proposed method in handling nonlinear Poisson-type partial differential equations.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"37 1\",\"pages\":\"155 - 165\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-023-00440-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-023-00440-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用多项式特定解法求解一维、二维和三维的非线性泊松型偏微分方程。通过实施多尺度技术,减少了系数矩阵的条件数,最终得到了稳定的数值解。该方法过程可分为两个主要部分:首先,为控制方程中的线性微分算子项确定相应的多项式特定解;其次,将这些多项式特定解作为基础函数,迭代求解控制方程中的其余非线性项。此外,我们还研究了通过将计算域移动一定距离来提高分析解中存在奇异点的方程的数值精度的可能性。我们进行了数值实验,以评估所提出方法的准确性和稳定性。将获得的结果与其他数值方法得出的结果进行比较,证明了所提方法在处理非线性泊松型偏微分方程时的准确性、稳定性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Method of Polynomial Particular Solutions for Solving Nonlinear Poisson-Type Equations

The Method of Polynomial Particular Solutions for Solving Nonlinear Poisson-Type Equations

In this paper, the method of polynomial particular solutions is used to solve nonlinear Poisson-type partial differential equations in one, two, and three dimensions. The condition number of the coefficient matrix is reduced through the implementation of multiple scale technique, ultimately yielding a stable numerical solution. The methodological process can be divided into two main parts: first, identifying the corresponding polynomial particular solutions for the linear differential operator terms in the governing equations, and second, employing these polynomial particular solutions as basis function to iteratively solve the remaining nonlinear terms within the governing equations. Additionally, we investigate the potential improvement in numerical accuracy for equations with singularities in the analytical solution by shifting the computational domain a certain distance. Numerical experiments are conducted to assess both the accuracy and stability of the proposed method. A comparison of the obtained results with those produced by other numerical methods demonstrates the accuracy, stability, and efficiency of the proposed method in handling nonlinear Poisson-type partial differential equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信