{"title":"SVD-based algorithms for tensor wheel decomposition","authors":"Mengyu Wang, Honghua Cui, Hanyu Li","doi":"10.1007/s10444-024-10194-9","DOIUrl":"10.1007/s10444-024-10194-9","url":null,"abstract":"<div><p>Tensor wheel (TW) decomposition combines the popular tensor ring and fully connected tensor network decompositions and has achieved excellent performance in tensor completion problem. A standard method to compute this decomposition is the alternating least squares (ALS). However, it usually suffers from slow convergence and numerical instability. In this work, the fast and robust SVD-based algorithms are investigated. Based on a result on TW-ranks, we first propose a deterministic algorithm that can estimate the TW decomposition of the target tensor under a controllable accuracy. Then, the randomized versions of this algorithm are presented, which can be divided into two categories and allow various types of sketching. Numerical results on synthetic and real data show that our algorithms have much better performance than the ALS-based method and are also quite robust. In addition, with one SVD-based algorithm, we also numerically explore the variability of TW decomposition with respect to TW-ranks and the comparisons between TW decomposition and other famous formats in terms of the performance on approximation and compression.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Desong Kong, Jie Shen, Li-Lian Wang, Shuhuang Xiang
{"title":"Eigenvalue analysis and applications of the Legendre dual-Petrov-Galerkin methods for initial value problems","authors":"Desong Kong, Jie Shen, Li-Lian Wang, Shuhuang Xiang","doi":"10.1007/s10444-024-10190-z","DOIUrl":"10.1007/s10444-024-10190-z","url":null,"abstract":"<div><p>In this paper, we show that the eigenvalues and eigenvectors of the spectral discretisation matrices resulting from the Legendre dual-Petrov-Galerkin (LDPG) method for the <i>m</i>th-order initial value problem (IVP): <span>(u^{(m)}(t)=sigma u(t),, tin (-1,1))</span> with constant <span>(sigma not =0)</span> and usual initial conditions at <i>t</i><span>(=-1,)</span> are associated with the generalised Bessel polynomials (GBPs). In particular, we derive analytical formulae for the eigenvalues and eigenvectors in the cases <i>m</i><span>(=1,2)</span>. As a by-product, we are able to answer some open questions related to the collocation method at Legendre points (extensively studied in the 1980s) for the first-order IVP, by reformulating it into a Petrov-Galerkin formulation. Our results have direct bearing on the CFL conditions of time-stepping schemes with spectral or spectral-element discretisation in space. Moreover, we present two stable algorithms for computing zeros of the GBPs and develop a general space-time method for evolutionary PDEs. We provide ample numerical results to demonstrate the high accuracy and robustness of the space-time methods for some interesting examples of linear and nonlinear wave problems.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicola Rares Franco, Daniel Fraulin, Andrea Manzoni, Paolo Zunino
{"title":"On the latent dimension of deep autoencoders for reduced order modeling of PDEs parametrized by random fields","authors":"Nicola Rares Franco, Daniel Fraulin, Andrea Manzoni, Paolo Zunino","doi":"10.1007/s10444-024-10189-6","DOIUrl":"10.1007/s10444-024-10189-6","url":null,"abstract":"<div><p>Deep Learning is having a remarkable impact on the design of Reduced Order Models (ROMs) for Partial Differential Equations (PDEs), where it is exploited as a powerful tool for tackling complex problems for which classical methods might fail. In this respect, deep autoencoders play a fundamental role, as they provide an extremely flexible tool for reducing the dimensionality of a given problem by leveraging on the nonlinear capabilities of neural networks. Indeed, starting from this paradigm, several successful approaches have already been developed, which are here referred to as Deep Learning-based ROMs (DL-ROMs). Nevertheless, when it comes to stochastic problems parameterized by random fields, the current understanding of DL-ROMs is mostly based on empirical evidence: in fact, their theoretical analysis is currently limited to the case of PDEs depending on a finite number of (deterministic) parameters. The purpose of this work is to extend the existing literature by providing some theoretical insights about the use of DL-ROMs in the presence of stochasticity generated by random fields. In particular, we derive explicit error bounds that can guide domain practitioners when choosing the latent dimension of deep autoencoders. We evaluate the practical usefulness of our theory by means of numerical experiments, showing how our analysis can significantly impact the performance of DL-ROMs.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10189-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Families of annihilating skew-selfadjoint operators and their connection to Hilbert complexes","authors":"Dirk Pauly, Rainer Picard","doi":"10.1007/s10444-024-10184-x","DOIUrl":"10.1007/s10444-024-10184-x","url":null,"abstract":"<div><p>In this short note we show that Hilbert complexes are strongly related to what we shall call annihilating sets of skew-selfadjoint operators. This provides for a new perspective on the classical topic of Hilbert complexes viewed as families of commuting normal operators.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10184-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computing eigenvalues of quasi-rational Said–Ball–Vandermonde matrices","authors":"Xiaoxiao Ma, Yingqing Xiao","doi":"10.1007/s10444-024-10191-y","DOIUrl":"10.1007/s10444-024-10191-y","url":null,"abstract":"<div><p>This paper focuses on computing the eigenvalues of the generalized collocation matrix of the rational Said–Ball basis, also called as the quasi-rational Said–Ball–Vandermonde (q-RSBV) matrix, with high relative accuracy. To achieve this, we propose explicit expressions for the minors of the q-RSBV matrix and develop a high-precision algorithm to compute these parameters. Additionally, we present perturbation theory and error analysis to further analyze the accuracy of our approach. Finally, we provide some numerical examples to demonstrate the high relative accuracy of our algorithms.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142022188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Morley type virtual element method for von Kármán equations","authors":"Devika Shylaja, Sarvesh Kumar","doi":"10.1007/s10444-024-10158-z","DOIUrl":"10.1007/s10444-024-10158-z","url":null,"abstract":"<div><p>This paper analyses the nonconforming Morley type virtual element method to approximate a regular solution to the von Kármán equations that describes bending of very thin elastic plates. Local existence and uniqueness of a discrete solution to the non-linear problem is discussed. A priori error estimate in the energy norm is established under minimal regularity assumptions on the exact solution. Error estimates in piecewise <span>(H^1)</span> and <span>(L^2)</span> norms are also derived. A working procedure to find an approximation for the discrete solution using Newton’s method is discussed. Numerical results that justify theoretical estimates are presented.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142022185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bernard Kapidani, Melina Merkel, Sebastian Schöps, Rafael Vázquez
{"title":"Arbitrary order spline representation of cohomology generators for isogeometric analysis of eddy current problems","authors":"Bernard Kapidani, Melina Merkel, Sebastian Schöps, Rafael Vázquez","doi":"10.1007/s10444-024-10181-0","DOIUrl":"10.1007/s10444-024-10181-0","url":null,"abstract":"<div><p>Common formulations of the eddy current problem involve either vector or scalar potentials, each with its own advantages and disadvantages. An impasse arises when using scalar potential-based formulations in the presence of conductors with non-trivial topology. A remedy is to augment the approximation spaces with generators of the first cohomology group. Most existing algorithms for this require a special, e.g., hierarchical, finite element basis construction. Using insights from de Rham complex approximation with splines, we show that additional conditions are here unnecessary. Spanning tree techniques can be adapted to operate on a hexahedral mesh resulting from isomorphisms between spline spaces of differential forms and de Rham complexes on an auxiliary control mesh.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10181-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convergence analysis of the Dirichlet-Neumann Waveform Relaxation algorithm for time fractional sub-diffusion and diffusion-wave equations in heterogeneous media","authors":"Soura Sana, Bankim C Mandal","doi":"10.1007/s10444-024-10185-w","DOIUrl":"10.1007/s10444-024-10185-w","url":null,"abstract":"<div><p>This article presents a comprehensive study on the convergence behavior of the Dirichlet-Neumann Waveform Relaxation algorithm applied to solve the time fractional sub-diffusion and diffusion-wave equations in multiple subdomains, considering the presence of some heterogeneous media. Our analysis focuses on estimating the convergence rate of the algorithm and investigates how this estimate varies with different fractional orders. Furthermore, we extend our analysis to encompass the 2D sub-diffusion case. To validate our findings, we conduct numerical experiments to verify the estimated convergence rate. The results confirm the theoretical estimates and provide empirical evidence for the algorithm’s efficiency and reliability. Moreover, we push the boundaries of the algorithm’s applicability by extending it to solve the time fractional Allen-Chan equation, a problem that exceeds our initial theoretical estimates. Remarkably, we observe that the algorithm performs exceptionally well in this extended scenario for both short and long-time windows.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frame-normalizable sequences","authors":"Pu-Ting Yu","doi":"10.1007/s10444-024-10182-z","DOIUrl":"10.1007/s10444-024-10182-z","url":null,"abstract":"<div><p>Let <i>H</i> be a separable Hilbert space and let <span>({x_{n}})</span> be a sequence in <i>H</i> that does not contain any zero elements. We say that <span>({x_{n}})</span> is a <i>Bessel-normalizable</i> or <i>frame-normalizable</i> sequence if the normalized sequence <span>({bigl {frac{x_n}{Vert x_nVert }bigr }})</span> is a Bessel sequence or a frame for <i>H</i>, respectively. In this paper, several necessary and sufficient conditions for sequences to be frame-normalizable and not frame-normalizable are proved. Perturbation theorems for frame-normalizable sequences are also proved. As applications, we show that the Balazs–Stoeva conjecture holds for Bessel-normalizable sequences. Finally, we apply our results to partially answer the open question raised by Aldroubi et al. as to whether the iterative system <span>(bigl {frac{A^{n} x}{Vert A^{n}xVert }bigr }_{nge 0,, xin S})</span> associated with a normal operator <span>(A:Hrightarrow H)</span> and a countable subset <i>S</i> of <i>H</i>, is a frame for <i>H</i>. In particular, if <i>S</i> is finite, then we are able to show that <span>(bigl {frac{A^{n} x}{Vert A^{n}xVert }bigr }_{nge 0,, xin S})</span> is not a frame for <i>H</i> whenever <span>({A^{n}x}_{nge 0,,xin S})</span> is a frame for <i>H</i>.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SlabLU: a two-level sparse direct solver for elliptic PDEs","authors":"Anna Yesypenko, Per-Gunnar Martinsson","doi":"10.1007/s10444-024-10176-x","DOIUrl":"10.1007/s10444-024-10176-x","url":null,"abstract":"<div><p>The paper describes a sparse direct solver for the linear systems that arise from the discretization of an elliptic PDE on a two-dimensional domain. The scheme decomposes the domain into thin subdomains, or “slabs” and uses a two-level approach that is designed with parallelization in mind. The scheme takes advantage of <span>(varvec{mathcal {H}}^textbf{2})</span>-matrix structure emerging during factorization and utilizes randomized algorithms to efficiently recover this structure. As opposed to multi-level nested dissection schemes that incorporate the use of <span>(varvec{mathcal {H}})</span> or <span>(varvec{mathcal {H}}^textbf{2})</span> matrices for a hierarchy of front sizes, SlabLU is a two-level scheme which only uses <span>(varvec{mathcal {H}}^textbf{2})</span>-matrix algebra for fronts of roughly the same size. The simplicity allows the scheme to be easily tuned for performance on modern architectures and GPUs. The solver described is compatible with a range of different local discretizations, and numerical experiments demonstrate its performance for regular discretizations of rectangular and curved geometries. The technique becomes particularly efficient when combined with very high-order accurate multidomain spectral collocation schemes. With this discretization, a Helmholtz problem on a domain of size <span>(textbf{1000} varvec{lambda } times textbf{1000} varvec{lambda })</span> (for which <span>(varvec{N}~mathbf {=100} textbf{M})</span>) is solved in 15 min to 6 correct digits on a high-powered desktop with GPU acceleration.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141909211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}