{"title":"湮灭偏自交算子族及其与希尔伯特复数的联系","authors":"Dirk Pauly, Rainer Picard","doi":"10.1007/s10444-024-10184-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this short note we show that Hilbert complexes are strongly related to what we shall call annihilating sets of skew-selfadjoint operators. This provides for a new perspective on the classical topic of Hilbert complexes viewed as families of commuting normal operators.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10184-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Families of annihilating skew-selfadjoint operators and their connection to Hilbert complexes\",\"authors\":\"Dirk Pauly, Rainer Picard\",\"doi\":\"10.1007/s10444-024-10184-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this short note we show that Hilbert complexes are strongly related to what we shall call annihilating sets of skew-selfadjoint operators. This provides for a new perspective on the classical topic of Hilbert complexes viewed as families of commuting normal operators.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"50 5\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10444-024-10184-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10184-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10184-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Families of annihilating skew-selfadjoint operators and their connection to Hilbert complexes
In this short note we show that Hilbert complexes are strongly related to what we shall call annihilating sets of skew-selfadjoint operators. This provides for a new perspective on the classical topic of Hilbert complexes viewed as families of commuting normal operators.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.