Advances in Computational Mathematics最新文献

筛选
英文 中文
Helmholtz FEM solutions are locally quasi-optimal modulo low frequencies 亥姆霍兹有限元求解在低频局部准最优
IF 1.7 3区 数学
Advances in Computational Mathematics Pub Date : 2024-11-18 DOI: 10.1007/s10444-024-10193-w
M. Averseng, J. Galkowski, E. A. Spence
{"title":"Helmholtz FEM solutions are locally quasi-optimal modulo low frequencies","authors":"M. Averseng,&nbsp;J. Galkowski,&nbsp;E. A. Spence","doi":"10.1007/s10444-024-10193-w","DOIUrl":"10.1007/s10444-024-10193-w","url":null,"abstract":"<div><p>For <i>h</i>-FEM discretisations of the Helmholtz equation with wavenumber <i>k</i>, we obtain <i>k</i>-explicit analogues of the classic local FEM error bounds of Nitsche and Schatz (Math. Comput. <b>28</b>(128), 937–958 1974), Wahlbin (1991, §9), Demlow et al.(Math. Comput. <b>80</b>(273), 1–9 2011), showing that these bounds hold with constants independent of <i>k</i>, provided one works in Sobolev norms weighted with <i>k</i> in the natural way. We prove two main results: (i) a bound on the local <span>(H^1)</span> error by the best approximation error plus the <span>(L^2)</span> error, both on a slightly larger set, and (ii) the bound in (i) but now with the <span>(L^2)</span> error replaced by the error in a negative Sobolev norm. The result (i) is valid for shape-regular triangulations, and is the <i>k</i>-explicit analogue of the main result of Demlow et al. (Math. Comput. <b>80</b>(273), 1–9 2011). The result (ii) is valid when the mesh is locally quasi-uniform on the scale of the wavelength (i.e., on the scale of <span>(k^{-1})</span>) and is the <i>k</i>-explicit analogue of the results of Nitsche and Schatz (Math. Comput. <b>28</b>(128), 937–958 1974), Wahlbin (1991, §9). Since our Sobolev spaces are weighted with <i>k</i> in the natural way, the result (ii) indicates that the Helmholtz FEM solution is locally quasi-optimal modulo low frequencies (i.e., frequencies <span>(lesssim k)</span>). Numerical experiments confirm this property, and also highlight interesting propagation phenomena in the Helmholtz FEM error.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10193-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher-order iterative decoupling for poroelasticity 孔弹性的高阶迭代解耦
IF 1.7 3区 数学
Advances in Computational Mathematics Pub Date : 2024-11-15 DOI: 10.1007/s10444-024-10200-0
Robert Altmann, Abdullah Mujahid, Benjamin Unger
{"title":"Higher-order iterative decoupling for poroelasticity","authors":"Robert Altmann,&nbsp;Abdullah Mujahid,&nbsp;Benjamin Unger","doi":"10.1007/s10444-024-10200-0","DOIUrl":"10.1007/s10444-024-10200-0","url":null,"abstract":"<div><p>For the iterative decoupling of elliptic–parabolic problems such as poroelasticity, we introduce time discretization schemes up to order five based on the backward differentiation formulae. Its analysis combines techniques known from fixed-point iterations with the convergence analysis of the temporal discretization. As the main result, we show that the convergence depends on the interplay between the time step size and the parameters for the contraction of the iterative scheme. Moreover, this connection is quantified explicitly, which allows for balancing the single error components. Several numerical experiments illustrate and validate the theoretical results, including a three-dimensional example from biomechanics.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10200-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive quarklet tree approximation 自适应夸克树近似法
IF 1.7 3区 数学
Advances in Computational Mathematics Pub Date : 2024-10-31 DOI: 10.1007/s10444-024-10205-9
Stephan Dahlke, Marc Hovemann, Thorsten Raasch, Dorian Vogel
{"title":"Adaptive quarklet tree approximation","authors":"Stephan Dahlke,&nbsp;Marc Hovemann,&nbsp;Thorsten Raasch,&nbsp;Dorian Vogel","doi":"10.1007/s10444-024-10205-9","DOIUrl":"10.1007/s10444-024-10205-9","url":null,"abstract":"<div><p>This paper is concerned with near-optimal approximation of a given univariate function with elements of a polynomially enriched wavelet frame, a so-called quarklet frame. Inspired by <i>hp</i>-approximation techniques of Binev, we use the underlying tree structure of the frame elements to derive an adaptive algorithm that, under standard assumptions concerning the local errors, can be used to create approximations with an error close to the best tree approximation error for a given cardinality. We support our findings by numerical experiments demonstrating that this approach can be used to achieve inverse-exponential convergence rates.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10205-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient computation of the sinc matrix function for the integration of second-order differential equations 高效计算用于二阶微分方程积分的 sinc 矩阵函数
IF 1.7 3区 数学
Advances in Computational Mathematics Pub Date : 2024-10-28 DOI: 10.1007/s10444-024-10202-y
Lidia Aceto, Fabio Durastante
{"title":"Efficient computation of the sinc matrix function for the integration of second-order differential equations","authors":"Lidia Aceto,&nbsp;Fabio Durastante","doi":"10.1007/s10444-024-10202-y","DOIUrl":"10.1007/s10444-024-10202-y","url":null,"abstract":"<div><p>This work deals with the numerical solution of systems of oscillatory second-order differential equations which often arise from the semi-discretization in space of partial differential equations. Since these differential equations exhibit (pronounced or highly) oscillatory behavior, standard numerical methods are known to perform poorly. Our approach consists in directly discretizing the problem by means of Gautschi-type integrators based on sinc matrix functions. The novelty contained here is that of using a suitable rational approximation formula for the sinc matrix function to apply a rational Krylov-like approximation method with suitable choices of poles. In particular, we discuss the application of the whole strategy to a finite element discretization of the wave equation.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sobolev regularity of bivariate isogeometric finite element spaces in case of a geometry map with degenerate corner 双变量等几何有限元空间在有退化角几何图形情况下的索波列夫正则性
IF 1.7 3区 数学
Advances in Computational Mathematics Pub Date : 2024-10-24 DOI: 10.1007/s10444-024-10203-x
Ulrich Reif
{"title":"Sobolev regularity of bivariate isogeometric finite element spaces in case of a geometry map with degenerate corner","authors":"Ulrich Reif","doi":"10.1007/s10444-024-10203-x","DOIUrl":"10.1007/s10444-024-10203-x","url":null,"abstract":"<div><p>We investigate Sobolev regularity of bivariate functions obtained in Isogeometric Analysis when using geometry maps that are degenerate in the sense that the first partial derivatives vanish at isolated points. In particular, we show how the known <span>(C^1)</span>-conditions for D-patches have to be tightened to guarantee square integrability of second partial derivatives, as required when computing finite element approximations of elliptic fourth order PDEs like the biharmonic equation.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10203-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An optimal ansatz space for moving least squares approximation on spheres 球面移动最小二乘法近似的最佳解析空间
IF 1.7 3区 数学
Advances in Computational Mathematics Pub Date : 2024-10-22 DOI: 10.1007/s10444-024-10201-z
Ralf Hielscher, Tim Pöschl
{"title":"An optimal ansatz space for moving least squares approximation on spheres","authors":"Ralf Hielscher,&nbsp;Tim Pöschl","doi":"10.1007/s10444-024-10201-z","DOIUrl":"10.1007/s10444-024-10201-z","url":null,"abstract":"<div><p>We revisit the moving least squares (MLS) approximation scheme on the sphere <span>(mathbb S^{d-1} subset {mathbb R}^d)</span>, where <span>(d&gt;1)</span>. It is well known that using the spherical harmonics up to degree <span>(L in {mathbb N})</span> as ansatz space yields for functions in <span>(mathcal {C}^{L+1}(mathbb S^{d-1}))</span> the approximation order <span>(mathcal {O}left( h^{L+1} right) )</span>, where <i>h</i> denotes the fill distance of the sampling nodes. In this paper, we show that the dimension of the ansatz space can be almost halved, by including only spherical harmonics of even or odd degrees up to <i>L</i>, while preserving the same order of approximation. Numerical experiments indicate that using the reduced ansatz space is essential to ensure the numerical stability of the MLS approximation scheme as <span>(h rightarrow 0)</span>. Finally, we compare our approach with an MLS approximation scheme that uses polynomials on the tangent space of the sphere as ansatz space.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10201-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A unified local projection-based stabilized virtual element method for the coupled Stokes-Darcy problem 斯托克斯-达西耦合问题的基于局部投影的统一稳定虚拟元素法
IF 1.7 3区 数学
Advances in Computational Mathematics Pub Date : 2024-10-21 DOI: 10.1007/s10444-024-10199-4
Sudheer Mishra, E. Natarajan
{"title":"A unified local projection-based stabilized virtual element method for the coupled Stokes-Darcy problem","authors":"Sudheer Mishra,&nbsp;E. Natarajan","doi":"10.1007/s10444-024-10199-4","DOIUrl":"10.1007/s10444-024-10199-4","url":null,"abstract":"<div><p>In this work, we propose and analyze a new stabilized virtual element method for the coupled Stokes-Darcy problem with Beavers-Joseph-Saffman interface condition on polygonal meshes. We derive two variants of local projection stabilization methods for the coupled Stokes-Darcy problem. The significance of local projection-based stabilization terms is that they provide reasonable control of the pressure component of the Stokes flow without involving higher-order derivative terms. The discrete inf-sup condition of the coupled Stokes-Darcy problem is established for the equal-order virtual element triplets involving velocity, hydraulic head, and pressure. The optimal error estimates are derived using the equal-order virtual elements in the energy and <span>(L^2)</span> norms. The proposed methods have several advantages: mass conservative, avoiding the coupling of the solution components, more accessible to implement, and performing efficiently on hybrid polygonal elements. Numerical experiments are conducted to depict the flexibility of the proposed methods, validating the theoretical results.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A pressure-residual augmented GLS stabilized method for a type of Stokes equations with nonstandard boundary conditions 具有非标准边界条件的斯托克斯方程类型的压力-滞后增强 GLS 稳定方法
IF 1.7 3区 数学
Advances in Computational Mathematics Pub Date : 2024-10-14 DOI: 10.1007/s10444-024-10204-w
Huoyuan Duan, Roger C. E. Tan, Duowei Zhu
{"title":"A pressure-residual augmented GLS stabilized method for a type of Stokes equations with nonstandard boundary conditions","authors":"Huoyuan Duan,&nbsp;Roger C. E. Tan,&nbsp;Duowei Zhu","doi":"10.1007/s10444-024-10204-w","DOIUrl":"10.1007/s10444-024-10204-w","url":null,"abstract":"<div><p>With local pressure-residual stabilizations as an augmentation to the classical Galerkin/least-squares (GLS) stabilized method, a new locally evaluated residual-based stabilized finite element method is proposed for a type of Stokes equations from the incompressible flows. We focus on the study of a type of nonstandard boundary conditions involving the mixed tangential velocity and pressure Dirichlet boundary conditions. Unexpectedly, in sharp contrast to the standard no-slip velocity Dirichlet boundary condition, neither the discrete LBB inf-sup stable elements nor the stabilized methods such as the classical GLS method could certainly ensure a convergent finite element solution, because the velocity solution could be very weak with its gradient not being square integrable. The main purpose of this paper is to study the error estimates of the new stabilized method for approximating the very weak velocity solution; with the local pressure-residual stabilizations, we can manage to prove the error estimates with a reasonable convergence order. Numerical results are provided to illustrate the performance and the theoretical results of the proposed method.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A stochastic perturbation analysis of the QR decomposition and its applications QR 分解的随机扰动分析及其应用
IF 1.7 3区 数学
Advances in Computational Mathematics Pub Date : 2024-10-02 DOI: 10.1007/s10444-024-10198-5
Tianru Wang, Yimin Wei
{"title":"A stochastic perturbation analysis of the QR decomposition and its applications","authors":"Tianru Wang,&nbsp;Yimin Wei","doi":"10.1007/s10444-024-10198-5","DOIUrl":"10.1007/s10444-024-10198-5","url":null,"abstract":"<div><p>The perturbation of the QR decompostion is analyzed from the probalistic point of view. The perturbation error is approximated by a first-order perturbation expansion with high probability where the perturbation is assumed to be random. Different from the previous normwise perturbation bounds using the Frobenius norm, our techniques are used to develop the spectral norm, as well as the entry-wise perturbation bounds for the stochastic perturbation of the QR decomposition. The statistics tends to be tighter (in the sense of the expectation) and more realistic than the classical worst-case perturbation bounds. The novel perturbation bounds are applicable to a wide range of problems in statistics and communications. In this paper, we consider the perturbation bound of the leverage scores under the Gaussian perturbation, the probability guarantees and the error bounds of the low rank matrix recovery, and the upper bound of the errors of the tensor CUR-type decomposition. We also apply our perturbation bounds to improve the robust design of the Tomlinson-Harashima precoding in the Multiple-Input Multiple-Output (MIMO) system.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An electrical engineering perspective on naturality in computational physics 从电气工程角度看计算物理学的自然性
IF 1.7 3区 数学
Advances in Computational Mathematics Pub Date : 2024-10-01 DOI: 10.1007/s10444-024-10197-6
P. Robert Kotiuga, Valtteri Lahtinen
{"title":"An electrical engineering perspective on naturality in computational physics","authors":"P. Robert Kotiuga,&nbsp;Valtteri Lahtinen","doi":"10.1007/s10444-024-10197-6","DOIUrl":"10.1007/s10444-024-10197-6","url":null,"abstract":"<div><p>We look at computational physics from an electrical engineering perspective and suggest that several concepts of mathematics, not so well-established in computational physics literature, present themselves as opportunities in the field. We discuss elliptic complexes and highlight the category theoretical background and its role as a unifying language between algebraic topology, differential geometry, and modelling software design. In particular, the ubiquitous concept of naturality is central. Natural differential operators have functorial analogues on the cochains of triangulated manifolds. In order to establish this correspondence, we derive formulas involving simplices and barycentric coordinates, defining discrete vector fields and a discrete Lie derivative as a result of a discrete analogue of Cartan’s magic formula. This theorem is the main mathematical result of the paper.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信