{"title":"周期结构声弹相互作用问题的自适应有限元DtN法","authors":"Lei Lin, Junliang Lv","doi":"10.1007/s10444-025-10253-9","DOIUrl":null,"url":null,"abstract":"<div><p>Consider a time-harmonic acoustic plane wave incident onto an elastic body with an unbounded periodic surface. The medium above the surface is supposed to be filled with a homogeneous compressible inviscid air/fluid of constant mass density, while the elastic body is assumed to be isotropic and linear. By introducing the Dirichlet-to-Neumann (DtN) operators for acoustic and elastic waves simultaneously, the model is formulated as an acoustic-elastic interaction problem in periodic structures. Based on a duality argument, an a posteriori error estimate is derived for the associated truncated finite element approximation. The a posteriori error estimate consists of the finite element approximation error and the truncation error of two different DtN operators, where the latter decays exponentially with respect to the truncation parameter. Based on the a posteriori error, an adaptive finite element algorithm is proposed for solving the acoustic-elastic interaction problem in periodic structures. Numerical experiments are presented to demonstrate the effectiveness of the proposed algorithm.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive finite element DtN method for the acoustic-elastic interaction problem in periodic structures\",\"authors\":\"Lei Lin, Junliang Lv\",\"doi\":\"10.1007/s10444-025-10253-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consider a time-harmonic acoustic plane wave incident onto an elastic body with an unbounded periodic surface. The medium above the surface is supposed to be filled with a homogeneous compressible inviscid air/fluid of constant mass density, while the elastic body is assumed to be isotropic and linear. By introducing the Dirichlet-to-Neumann (DtN) operators for acoustic and elastic waves simultaneously, the model is formulated as an acoustic-elastic interaction problem in periodic structures. Based on a duality argument, an a posteriori error estimate is derived for the associated truncated finite element approximation. The a posteriori error estimate consists of the finite element approximation error and the truncation error of two different DtN operators, where the latter decays exponentially with respect to the truncation parameter. Based on the a posteriori error, an adaptive finite element algorithm is proposed for solving the acoustic-elastic interaction problem in periodic structures. Numerical experiments are presented to demonstrate the effectiveness of the proposed algorithm.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-025-10253-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10253-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An adaptive finite element DtN method for the acoustic-elastic interaction problem in periodic structures
Consider a time-harmonic acoustic plane wave incident onto an elastic body with an unbounded periodic surface. The medium above the surface is supposed to be filled with a homogeneous compressible inviscid air/fluid of constant mass density, while the elastic body is assumed to be isotropic and linear. By introducing the Dirichlet-to-Neumann (DtN) operators for acoustic and elastic waves simultaneously, the model is formulated as an acoustic-elastic interaction problem in periodic structures. Based on a duality argument, an a posteriori error estimate is derived for the associated truncated finite element approximation. The a posteriori error estimate consists of the finite element approximation error and the truncation error of two different DtN operators, where the latter decays exponentially with respect to the truncation parameter. Based on the a posteriori error, an adaptive finite element algorithm is proposed for solving the acoustic-elastic interaction problem in periodic structures. Numerical experiments are presented to demonstrate the effectiveness of the proposed algorithm.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.