Guo-Dong Zhang, Kejia Pan, Xiaoming He, Xiaofeng Yang
{"title":"铁磁流体Shliomis模型的能量稳定和高效有限元格式","authors":"Guo-Dong Zhang, Kejia Pan, Xiaoming He, Xiaofeng Yang","doi":"10.1007/s10444-025-10249-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we aim to design two energy-stable and efficient finite element schemes for simulating the ferrofluid flows based on the well-known Shliomis model. The model is a highly nonlinear, coupled, multi-physics system, consisting of the Navier–Stokes equations, magnetostatic equation, and magnetization field equation. We propose two reliable numerical algorithms with the following desired features: linearity and unconditional energy stability. Several key techniques are used to achieve the required features, including the auxiliary variable method, consistent terms method, prediction-correction method, and semi-implicit stabilization method. The first scheme is based on a hybrid continuous/discontinuous finite elements spatial approximation, and the second utilizes decoupled continuous finite element spatial discretization. We have rigorously demonstrated that the proposed schemes are unconditionally energy stable and carried out extensive numerical simulations to illustrate the accuracy and stability of the developed schemes, as well as some interesting controllable characteristics of the ferrofluid flows.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-stable and efficient finite element schemes for the Shliomis model of ferrofluid flows\",\"authors\":\"Guo-Dong Zhang, Kejia Pan, Xiaoming He, Xiaofeng Yang\",\"doi\":\"10.1007/s10444-025-10249-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we aim to design two energy-stable and efficient finite element schemes for simulating the ferrofluid flows based on the well-known Shliomis model. The model is a highly nonlinear, coupled, multi-physics system, consisting of the Navier–Stokes equations, magnetostatic equation, and magnetization field equation. We propose two reliable numerical algorithms with the following desired features: linearity and unconditional energy stability. Several key techniques are used to achieve the required features, including the auxiliary variable method, consistent terms method, prediction-correction method, and semi-implicit stabilization method. The first scheme is based on a hybrid continuous/discontinuous finite elements spatial approximation, and the second utilizes decoupled continuous finite element spatial discretization. We have rigorously demonstrated that the proposed schemes are unconditionally energy stable and carried out extensive numerical simulations to illustrate the accuracy and stability of the developed schemes, as well as some interesting controllable characteristics of the ferrofluid flows.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-025-10249-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10249-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Energy-stable and efficient finite element schemes for the Shliomis model of ferrofluid flows
In this paper, we aim to design two energy-stable and efficient finite element schemes for simulating the ferrofluid flows based on the well-known Shliomis model. The model is a highly nonlinear, coupled, multi-physics system, consisting of the Navier–Stokes equations, magnetostatic equation, and magnetization field equation. We propose two reliable numerical algorithms with the following desired features: linearity and unconditional energy stability. Several key techniques are used to achieve the required features, including the auxiliary variable method, consistent terms method, prediction-correction method, and semi-implicit stabilization method. The first scheme is based on a hybrid continuous/discontinuous finite elements spatial approximation, and the second utilizes decoupled continuous finite element spatial discretization. We have rigorously demonstrated that the proposed schemes are unconditionally energy stable and carried out extensive numerical simulations to illustrate the accuracy and stability of the developed schemes, as well as some interesting controllable characteristics of the ferrofluid flows.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.