{"title":"On the recovery of initial status for linearized shallow-water wave equation by data assimilation with error analysis","authors":"Jun-Liang Fu, Jijun Liu","doi":"10.1007/s10444-024-10210-y","DOIUrl":"10.1007/s10444-024-10210-y","url":null,"abstract":"<div><p>We recover the initial status of an evolution system governed by linearized shallow-water wave equations in a 2-dimensional bounded domain by data assimilation technique, with the aim of determining the initial wave height from the measurement of wave distribution in an interior domain. Since we specify only one component of the solution to the governed system and the observation is only measured in part of the interior domain, taking into consideration of the engineering restriction on the measurement process, this problem is ill-posed. Based on the known well-posedness result of the forward problem, this inverse problem is reformulated as an optimizing problem with data-fit term and the penalty term involving the background of the wave amplitude as <i>a-prior</i> information. We establish the Euler-Lagrange equation for the optimal solution in terms of its adjoint system. The unique solvability of this Euler-Lagrange equation is rigorously proven. Then the optimal approximation error of the regularizing solution to the exact solution is established in terms of the noise level of measurement data and the <i>a-prior</i> background distribution, based on the Lax-Milgram theorem. Finally, we propose an iterative algorithm to realize this process, with several numerical examples to validate the efficacy of our proposed method.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inverting the fundamental diagram and forecasting boundary conditions: how machine learning can improve macroscopic models for traffic flow","authors":"Maya Briani, Emiliano Cristiani, Elia Onofri","doi":"10.1007/s10444-024-10206-8","DOIUrl":"10.1007/s10444-024-10206-8","url":null,"abstract":"<div><p>In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular traffic. This is done to complement respective advantages of data-driven and model-driven approaches. We consider here a dataset with flux and velocity data of vehicles moving on a highway, collected by fixed sensors and classified by lane and by class of vehicle. By means of a machine learning model based on an LSTM recursive neural network, we extrapolate two important pieces of information: (1) if congestion is appearing under the sensor, and (2) the total amount of vehicles which is going to pass under the sensor in the next future (30 min). These pieces of information are then used to improve the accuracy of an LWR-based first-order multi-class model describing the dynamics of traffic flow between sensors. The first piece of information is used to invert the (concave) fundamental diagram, thus recovering the density of vehicles from the flux data, and then inject directly the density datum in the model. This allows one to better approximate the dynamics between sensors, especially if an accident/bottleneck happens in a not monitored stretch of the road. The second piece of information is used instead as boundary conditions for the equations underlying the traffic model, to better predict the total amount of vehicles on the road at any future time. Some examples motivated by real scenarios will be discussed. Real data are provided by the Italian motorway company Autovie Venete S.p.A.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongjia Chen, Teng Wang, Chun-Hua Zhang, Xiang Wang
{"title":"Solving the quadratic eigenvalue problem expressed in non-monomial bases by the tropical scaling","authors":"Hongjia Chen, Teng Wang, Chun-Hua Zhang, Xiang Wang","doi":"10.1007/s10444-024-10214-8","DOIUrl":"10.1007/s10444-024-10214-8","url":null,"abstract":"<div><p>In this paper, we consider the quadratic eigenvalue problem (QEP) expressed in various commonly used bases, including Taylor, Newton, and Lagrange bases. We propose to investigate the backward errors of the computed eigenpairs and condition numbers of eigenvalues for QEP solved by a class of block Kronecker linearizations. To improve the backward error and condition number of the QEP expressed in a non-monomial basis, we combine the tropical scaling with the block Kronecker linearization. We then establish upper bounds for the backward error of an approximate eigenpair of the QEP relative to the backward error of an approximate eigenpair of the block Kronecker linearization with and without tropical scaling. Moreover, we get bounds for the normwise condition number of an eigenvalue of the QEP relative to that of the block Kronecker linearization. Our investigation is accompanied by adequate numerical experiments to justify our theoretical findings.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discontinuous Galerkin schemes for Stokes flow with Tresca boundary condition: iterative a posteriori error analysis","authors":"J.K. Djoko, T. Sayah","doi":"10.1007/s10444-024-10207-7","DOIUrl":"10.1007/s10444-024-10207-7","url":null,"abstract":"<div><p>In two dimensions, we propose and analyse an iterative <i>a posteriori</i> error indicator for the discontinuous Galerkin finite element approximations of the Stokes equations under boundary conditions of friction type. Two sources of error are identified here, namely; the discretisation error and the linearization error. Under a smallness assumption on data, we prove that the devised error estimator is reliable. Balancing these two errors is crucial to design an adaptive strategy for mesh refinement. We illustrate the theory with some representative numerical examples.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10207-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Helmholtz FEM solutions are locally quasi-optimal modulo low frequencies","authors":"M. Averseng, J. Galkowski, E. A. Spence","doi":"10.1007/s10444-024-10193-w","DOIUrl":"10.1007/s10444-024-10193-w","url":null,"abstract":"<div><p>For <i>h</i>-FEM discretisations of the Helmholtz equation with wavenumber <i>k</i>, we obtain <i>k</i>-explicit analogues of the classic local FEM error bounds of Nitsche and Schatz (Math. Comput. <b>28</b>(128), 937–958 1974), Wahlbin (1991, §9), Demlow et al.(Math. Comput. <b>80</b>(273), 1–9 2011), showing that these bounds hold with constants independent of <i>k</i>, provided one works in Sobolev norms weighted with <i>k</i> in the natural way. We prove two main results: (i) a bound on the local <span>(H^1)</span> error by the best approximation error plus the <span>(L^2)</span> error, both on a slightly larger set, and (ii) the bound in (i) but now with the <span>(L^2)</span> error replaced by the error in a negative Sobolev norm. The result (i) is valid for shape-regular triangulations, and is the <i>k</i>-explicit analogue of the main result of Demlow et al. (Math. Comput. <b>80</b>(273), 1–9 2011). The result (ii) is valid when the mesh is locally quasi-uniform on the scale of the wavelength (i.e., on the scale of <span>(k^{-1})</span>) and is the <i>k</i>-explicit analogue of the results of Nitsche and Schatz (Math. Comput. <b>28</b>(128), 937–958 1974), Wahlbin (1991, §9). Since our Sobolev spaces are weighted with <i>k</i> in the natural way, the result (ii) indicates that the Helmholtz FEM solution is locally quasi-optimal modulo low frequencies (i.e., frequencies <span>(lesssim k)</span>). Numerical experiments confirm this property, and also highlight interesting propagation phenomena in the Helmholtz FEM error.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10193-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Higher-order iterative decoupling for poroelasticity","authors":"Robert Altmann, Abdullah Mujahid, Benjamin Unger","doi":"10.1007/s10444-024-10200-0","DOIUrl":"10.1007/s10444-024-10200-0","url":null,"abstract":"<div><p>For the iterative decoupling of elliptic–parabolic problems such as poroelasticity, we introduce time discretization schemes up to order five based on the backward differentiation formulae. Its analysis combines techniques known from fixed-point iterations with the convergence analysis of the temporal discretization. As the main result, we show that the convergence depends on the interplay between the time step size and the parameters for the contraction of the iterative scheme. Moreover, this connection is quantified explicitly, which allows for balancing the single error components. Several numerical experiments illustrate and validate the theoretical results, including a three-dimensional example from biomechanics.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10200-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephan Dahlke, Marc Hovemann, Thorsten Raasch, Dorian Vogel
{"title":"Adaptive quarklet tree approximation","authors":"Stephan Dahlke, Marc Hovemann, Thorsten Raasch, Dorian Vogel","doi":"10.1007/s10444-024-10205-9","DOIUrl":"10.1007/s10444-024-10205-9","url":null,"abstract":"<div><p>This paper is concerned with near-optimal approximation of a given univariate function with elements of a polynomially enriched wavelet frame, a so-called quarklet frame. Inspired by <i>hp</i>-approximation techniques of Binev, we use the underlying tree structure of the frame elements to derive an adaptive algorithm that, under standard assumptions concerning the local errors, can be used to create approximations with an error close to the best tree approximation error for a given cardinality. We support our findings by numerical experiments demonstrating that this approach can be used to achieve inverse-exponential convergence rates.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10205-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient computation of the sinc matrix function for the integration of second-order differential equations","authors":"Lidia Aceto, Fabio Durastante","doi":"10.1007/s10444-024-10202-y","DOIUrl":"10.1007/s10444-024-10202-y","url":null,"abstract":"<div><p>This work deals with the numerical solution of systems of oscillatory second-order differential equations which often arise from the semi-discretization in space of partial differential equations. Since these differential equations exhibit (pronounced or highly) oscillatory behavior, standard numerical methods are known to perform poorly. Our approach consists in directly discretizing the problem by means of Gautschi-type integrators based on sinc matrix functions. The novelty contained here is that of using a suitable rational approximation formula for the sinc matrix function to apply a rational Krylov-like approximation method with suitable choices of poles. In particular, we discuss the application of the whole strategy to a finite element discretization of the wave equation.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sobolev regularity of bivariate isogeometric finite element spaces in case of a geometry map with degenerate corner","authors":"Ulrich Reif","doi":"10.1007/s10444-024-10203-x","DOIUrl":"10.1007/s10444-024-10203-x","url":null,"abstract":"<div><p>We investigate Sobolev regularity of bivariate functions obtained in Isogeometric Analysis when using geometry maps that are degenerate in the sense that the first partial derivatives vanish at isolated points. In particular, we show how the known <span>(C^1)</span>-conditions for D-patches have to be tightened to guarantee square integrability of second partial derivatives, as required when computing finite element approximations of elliptic fourth order PDEs like the biharmonic equation.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10203-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An optimal ansatz space for moving least squares approximation on spheres","authors":"Ralf Hielscher, Tim Pöschl","doi":"10.1007/s10444-024-10201-z","DOIUrl":"10.1007/s10444-024-10201-z","url":null,"abstract":"<div><p>We revisit the moving least squares (MLS) approximation scheme on the sphere <span>(mathbb S^{d-1} subset {mathbb R}^d)</span>, where <span>(d>1)</span>. It is well known that using the spherical harmonics up to degree <span>(L in {mathbb N})</span> as ansatz space yields for functions in <span>(mathcal {C}^{L+1}(mathbb S^{d-1}))</span> the approximation order <span>(mathcal {O}left( h^{L+1} right) )</span>, where <i>h</i> denotes the fill distance of the sampling nodes. In this paper, we show that the dimension of the ansatz space can be almost halved, by including only spherical harmonics of even or odd degrees up to <i>L</i>, while preserving the same order of approximation. Numerical experiments indicate that using the reduced ansatz space is essential to ensure the numerical stability of the MLS approximation scheme as <span>(h rightarrow 0)</span>. Finally, we compare our approach with an MLS approximation scheme that uses polynomials on the tangent space of the sphere as ansatz space.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10201-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}