Obstructions for Gabor frames of the second-order B-spline

IF 2.1 3区 数学 Q2 MATHEMATICS, APPLIED
Riya Ghosh, A. Antony Selvan
{"title":"Obstructions for Gabor frames of the second-order B-spline","authors":"Riya Ghosh,&nbsp;A. Antony Selvan","doi":"10.1007/s10444-025-10239-7","DOIUrl":null,"url":null,"abstract":"<div><p>For a window <span>\\( g\\in L^2(\\mathbb {R}) \\)</span>, the subset of all lattice parameters <span>\\( (a, b)\\in \\mathbb {R}^2_+ \\)</span> such that <span>\\( \\mathcal {G}(g,a,b)=\\{e^{2\\pi ib m\\cdot }g(\\cdot -a k): k, m\\in \\mathbb {Z}\\} \\)</span> forms a frame for <span>\\( L^2(\\mathbb {R}) \\)</span> is known as the frame set of <i>g</i>. In time-frequency analysis, determining the Gabor frame set for a given window is a challenging open problem. In particular, the frame set for B-splines has many obstructions. Lemvig and Nielsen in (J. Fourier Anal. Appl. <b>22</b>, 1440–1451, 2016) conjectured that if </p><div><div><span>$$\\begin{aligned} a_0=\\dfrac{1}{2m+1},~ b_0=\\dfrac{2k+1}{2},~k,m\\in \\mathbb {N},~k&gt;m,~a_0b_0&lt;1, \\end{aligned}$$</span></div></div><p>then the Gabor system <span>\\( \\mathcal {G}(Q_2, a, b) \\)</span> of the second-order B-spline <span>\\( Q_2 \\)</span> is not a frame along the hyperbolas </p><div><div><span>$$\\begin{aligned} ab=\\dfrac{2k+1}{2(2m+1)},\\text { for }b\\in \\left[ b_0-a_0\\dfrac{k-m}{2}, b_0+a_0\\dfrac{k-m}{2}\\right] , \\end{aligned}$$</span></div></div><p>for every <span>\\( a_0 \\)</span>, <span>\\( b_0 \\)</span>. Nielsen in (2015) also conjectured that <span>\\( \\mathcal {G}(Q_2, a,b) \\)</span> is not a frame for </p><div><div><span>$$a=\\dfrac{1}{2m},~b=\\dfrac{2k+1}{2},~k,m\\in \\mathbb {N},~k&gt;m,~ab&lt;1\\text { with }\\gcd (4m,2k+1)=1.$$</span></div></div><p>In this paper, we prove that both Conjectures are true.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10239-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For a window \( g\in L^2(\mathbb {R}) \), the subset of all lattice parameters \( (a, b)\in \mathbb {R}^2_+ \) such that \( \mathcal {G}(g,a,b)=\{e^{2\pi ib m\cdot }g(\cdot -a k): k, m\in \mathbb {Z}\} \) forms a frame for \( L^2(\mathbb {R}) \) is known as the frame set of g. In time-frequency analysis, determining the Gabor frame set for a given window is a challenging open problem. In particular, the frame set for B-splines has many obstructions. Lemvig and Nielsen in (J. Fourier Anal. Appl. 22, 1440–1451, 2016) conjectured that if

$$\begin{aligned} a_0=\dfrac{1}{2m+1},~ b_0=\dfrac{2k+1}{2},~k,m\in \mathbb {N},~k>m,~a_0b_0<1, \end{aligned}$$

then the Gabor system \( \mathcal {G}(Q_2, a, b) \) of the second-order B-spline \( Q_2 \) is not a frame along the hyperbolas

$$\begin{aligned} ab=\dfrac{2k+1}{2(2m+1)},\text { for }b\in \left[ b_0-a_0\dfrac{k-m}{2}, b_0+a_0\dfrac{k-m}{2}\right] , \end{aligned}$$

for every \( a_0 \), \( b_0 \). Nielsen in (2015) also conjectured that \( \mathcal {G}(Q_2, a,b) \) is not a frame for

$$a=\dfrac{1}{2m},~b=\dfrac{2k+1}{2},~k,m\in \mathbb {N},~k>m,~ab<1\text { with }\gcd (4m,2k+1)=1.$$

In this paper, we prove that both Conjectures are true.

二阶b样条Gabor框架的障碍物
对于一个窗口g\in L^2(\mathbb {R}) g\in L^2(\mathbb {R}),所有晶格参数(a, b)\in mathbb {R}^2_+ (a, b)\ mathbb {R}^2_+使得\mathcal {g}(g,a,b)=\{e^{2\pi b m\cdot}g(\cdot - k): k, m\in \mathbb {Z}\} \mathcal {g}(g,a,b)=\{e^{2\pi b m\cdot}g(\cdot - k)k, m\in \mathbb {Z}\}形成L^2(\mathbb {R})的帧。L^2(\mathbb {R})被称为g的帧集。在时频分析中,确定给定窗口的Gabor帧集是一个具有挑战性的开放问题。特别地,b样条的框架集有许多障碍物。levig和Nielsen [J.傅里叶。]达成。22日,1440 - 1451,2016)推测,如果\{对齐}a_0开始= \ dfrac {1}, {2 m + 1} ~ b_0 = \ dfrac {2 k + 1}, {2} ~ k、m \ \ mathbb {N}, ~ k> m ~ a_0b_0< 1,结束\{对齐}\{对齐}a_0开始= \ dfrac {1}, {2 m + 1} ~ b_0 = \ dfrac {2 k + 1}, {2} ~ k、m \ \ mathbb {N}, ~ k > m, ~ a_0b_0then伽柏系统\ mathcal {G} (Q_2, a, b) \ mathcal {G} (Q_2, a, b)的二阶b样条Q_2 Q_2不是一个帧沿双曲线\{对齐}开始ab = \ dfrac {2 k + 1} {2 (2 m + 1)}, {b} \ \文本在\ [b_0-a_0 \ dfrac {km} {2},b_0 + a_0 \ dfrac {km}{2} \],结束\{对齐}\{对齐}开始ab = \ dfrac {2 k + 1} {2 (2 m + 1)}, {b} \ \文本在\ [b_0-a_0 \ dfrac {km} {2}, b_0 + a_0 \ dfrac {km}{2} \右],结束\{对齐}每a_0 a_0, b_0 b_0。Nielsen在(2015)中也推测\mathcal {G}(Q_2, a,b) \mathcal {G}(Q_2, a,b) \mathcal {G}(Q_2, a,b)不是一个框架,因为a=\dfrac{1}{2m},~b=\dfrac{2k+1}{2},~k,m\in \mathbb {N},~k>m,~ab<1\text {with}\gcd (4m,2k+1)=1。a=\dfrac{1}{2m},~b=\dfrac{2k+1}{2},~k,m\in \mathbb {N},~k>m,~ ab本文证明了这两个猜想都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信