利用神经网络和最优系统求解椭圆型最优控制问题

IF 2.1 3区 数学 Q2 MATHEMATICS, APPLIED
Yongcheng Dai, Bangti Jin, Ramesh Chandra Sau, Zhi Zhou
{"title":"利用神经网络和最优系统求解椭圆型最优控制问题","authors":"Yongcheng Dai,&nbsp;Bangti Jin,&nbsp;Ramesh Chandra Sau,&nbsp;Zhi Zhou","doi":"10.1007/s10444-025-10241-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigate a neural network-based solver for optimal control problems (without/with box constraint) for linear and semilinear second-order elliptic problems. It utilizes a coupled system derived from the first-order optimality system of the optimal control problem and employs deep neural networks to represent the solutions to the reduced system. We present an error analysis of the scheme and provide <span>\\(L^2(\\Omega )\\)</span> error bounds on the state, control, and adjoint in terms of neural network parameters (e.g., depth, width, and parameter bounds) and the numbers of sampling points. The main tools in the analysis include offset Rademacher complexity and boundedness and Lipschitz continuity of neural network functions. We present several numerical examples to illustrate the method and compare it with two existing ones.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving elliptic optimal control problems via neural networks and optimality system\",\"authors\":\"Yongcheng Dai,&nbsp;Bangti Jin,&nbsp;Ramesh Chandra Sau,&nbsp;Zhi Zhou\",\"doi\":\"10.1007/s10444-025-10241-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we investigate a neural network-based solver for optimal control problems (without/with box constraint) for linear and semilinear second-order elliptic problems. It utilizes a coupled system derived from the first-order optimality system of the optimal control problem and employs deep neural networks to represent the solutions to the reduced system. We present an error analysis of the scheme and provide <span>\\\\(L^2(\\\\Omega )\\\\)</span> error bounds on the state, control, and adjoint in terms of neural network parameters (e.g., depth, width, and parameter bounds) and the numbers of sampling points. The main tools in the analysis include offset Rademacher complexity and boundedness and Lipschitz continuity of neural network functions. We present several numerical examples to illustrate the method and compare it with two existing ones.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-025-10241-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10241-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了一个基于神经网络的线性和半线性二阶椭圆问题的最优控制问题(无/有框约束)求解器。它利用由最优控制问题的一阶最优性系统导出的耦合系统,并利用深度神经网络来表示简化后系统的解。我们给出了该方案的误差分析,并根据神经网络参数(例如深度,宽度和参数边界)和采样点的数量提供了状态,控制和伴随的L^2(\Omega)L^2(\Omega)误差界。分析的主要工具包括神经网络函数的偏移Rademacher复杂度、有界性和Lipschitz连续性。我们给出了几个数值例子来说明该方法,并与现有的两种方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving elliptic optimal control problems via neural networks and optimality system

In this work, we investigate a neural network-based solver for optimal control problems (without/with box constraint) for linear and semilinear second-order elliptic problems. It utilizes a coupled system derived from the first-order optimality system of the optimal control problem and employs deep neural networks to represent the solutions to the reduced system. We present an error analysis of the scheme and provide \(L^2(\Omega )\) error bounds on the state, control, and adjoint in terms of neural network parameters (e.g., depth, width, and parameter bounds) and the numbers of sampling points. The main tools in the analysis include offset Rademacher complexity and boundedness and Lipschitz continuity of neural network functions. We present several numerical examples to illustrate the method and compare it with two existing ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信