曲面上一般二阶椭圆问题的非协调虚元法

IF 2.1 3区 数学 Q2 MATHEMATICS, APPLIED
Yi Liu, Alessandro Russo
{"title":"曲面上一般二阶椭圆问题的非协调虚元法","authors":"Yi Liu,&nbsp;Alessandro Russo","doi":"10.1007/s10444-025-10242-y","DOIUrl":null,"url":null,"abstract":"<div><p>The nonconforming virtual element method with curved edges was proposed and analyzed for the Poisson equation by L. Beirão da Veiga, Y. Liu, L. Mascotto, and A. Russo in (J. Sci. Comput. <b>99</b>(1) 2024). The goal of this paper is to extend the nonconforming virtual element method to a more general second-order elliptic problem with variable coefficients in domains with curved boundaries and curved internal interfaces. We prove an optimal convergence of arbitrary order in the energy and <span>\\(L^2\\)</span>-norms, confirmed by numerical experiments on a set of polygonal meshes. The accuracy of the numerical approximation provided by the method is shown to be comparable with that obtained from the theoretical analysis.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonconforming virtual element method for general second-order elliptic problems on curved domain\",\"authors\":\"Yi Liu,&nbsp;Alessandro Russo\",\"doi\":\"10.1007/s10444-025-10242-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The nonconforming virtual element method with curved edges was proposed and analyzed for the Poisson equation by L. Beirão da Veiga, Y. Liu, L. Mascotto, and A. Russo in (J. Sci. Comput. <b>99</b>(1) 2024). The goal of this paper is to extend the nonconforming virtual element method to a more general second-order elliptic problem with variable coefficients in domains with curved boundaries and curved internal interfaces. We prove an optimal convergence of arbitrary order in the energy and <span>\\\\(L^2\\\\)</span>-norms, confirmed by numerical experiments on a set of polygonal meshes. The accuracy of the numerical approximation provided by the method is shown to be comparable with that obtained from the theoretical analysis.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-025-10242-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10242-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

L. beir o da Veiga, Y. Liu, L. Mascotto, A. Russo等(J. Sci.)提出并分析了带曲面边的Poisson方程非协调虚元法。计算。99(1)2024)。本文的目的是将非协调虚元法推广到具有弯曲边界和弯曲内界面域的更一般的二阶变系数椭圆问题。在一组多边形网格上通过数值实验证明了该方法在能量和L2L^2范数上具有任意阶的最优收敛性。该方法所提供的数值近似精度与理论分析结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonconforming virtual element method for general second-order elliptic problems on curved domain

The nonconforming virtual element method with curved edges was proposed and analyzed for the Poisson equation by L. Beirão da Veiga, Y. Liu, L. Mascotto, and A. Russo in (J. Sci. Comput. 99(1) 2024). The goal of this paper is to extend the nonconforming virtual element method to a more general second-order elliptic problem with variable coefficients in domains with curved boundaries and curved internal interfaces. We prove an optimal convergence of arbitrary order in the energy and \(L^2\)-norms, confirmed by numerical experiments on a set of polygonal meshes. The accuracy of the numerical approximation provided by the method is shown to be comparable with that obtained from the theoretical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信