麦克斯韦方程组的解耦弱伽辽金有限元法

IF 2.1 3区 数学 Q2 MATHEMATICS, APPLIED
Wenya Qi, Kaifang Liu
{"title":"麦克斯韦方程组的解耦弱伽辽金有限元法","authors":"Wenya Qi,&nbsp;Kaifang Liu","doi":"10.1007/s10444-025-10243-x","DOIUrl":null,"url":null,"abstract":"<div><p>We consider Maxwell’s equations in a decoupled formulation by introducing Lagrange multipliers and obtain the magnetic field given the known electric field. The proposed formulation combines the decoupled weak form with the four equations of Maxwell’s model. The decoupled system reduces the computational complexity by restricting the degrees of freedom of the electric or magnetic fields. We present the construction of mixed weak Galerkin finite element methods for electric field and magnetic field, utilizing backward Euler time discretization in fully discrete schemes. We analyze the error estimate of the electric and magnetic field in the energy norm. Finally, we present numerical results for the proposed schemes in three-dimensional space to validate our theory.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoupled weak Galerkin finite element method for Maxwell’s equations\",\"authors\":\"Wenya Qi,&nbsp;Kaifang Liu\",\"doi\":\"10.1007/s10444-025-10243-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider Maxwell’s equations in a decoupled formulation by introducing Lagrange multipliers and obtain the magnetic field given the known electric field. The proposed formulation combines the decoupled weak form with the four equations of Maxwell’s model. The decoupled system reduces the computational complexity by restricting the degrees of freedom of the electric or magnetic fields. We present the construction of mixed weak Galerkin finite element methods for electric field and magnetic field, utilizing backward Euler time discretization in fully discrete schemes. We analyze the error estimate of the electric and magnetic field in the energy norm. Finally, we present numerical results for the proposed schemes in three-dimensional space to validate our theory.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-025-10243-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10243-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

通过引入拉格朗日乘子以解耦形式考虑麦克斯韦方程组,得到已知电场条件下的磁场。该公式将解耦弱形式与麦克斯韦模型的四个方程相结合。解耦系统通过限制电场或磁场的自由度来降低计算复杂度。利用完全离散格式下的向后欧拉时间离散,构造了电场和磁场的混合弱伽辽金有限元方法。分析了能量范数中电场和磁场的误差估计。最后,我们给出了在三维空间中的数值结果来验证我们的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoupled weak Galerkin finite element method for Maxwell’s equations

We consider Maxwell’s equations in a decoupled formulation by introducing Lagrange multipliers and obtain the magnetic field given the known electric field. The proposed formulation combines the decoupled weak form with the four equations of Maxwell’s model. The decoupled system reduces the computational complexity by restricting the degrees of freedom of the electric or magnetic fields. We present the construction of mixed weak Galerkin finite element methods for electric field and magnetic field, utilizing backward Euler time discretization in fully discrete schemes. We analyze the error estimate of the electric and magnetic field in the energy norm. Finally, we present numerical results for the proposed schemes in three-dimensional space to validate our theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信