傅立叶定律与摩擦阻尼混合问题的指数衰减与数值处理

IF 2.1 3区 数学 Q2 MATHEMATICS, APPLIED
Mauro L. Santos, Anderson J. A. Ramos, Anderson D. S. Campelo
{"title":"傅立叶定律与摩擦阻尼混合问题的指数衰减与数值处理","authors":"Mauro L. Santos,&nbsp;Anderson J. A. Ramos,&nbsp;Anderson D. S. Campelo","doi":"10.1007/s10444-025-10250-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates a finite difference numerical scheme to analyze the impact of the effects caused by the strong coupling of Fourier’s law on the solutions of the equations of motion of a mixture of two one-dimensional linear isotropic elastic materials with frictional damping. We first prove the existence of solutions and exponential stability. In the sequence, we analyze the semi-discrete problem in finite differences and we use the energy method to prove the exponential stabilization of the corresponding semi-discrete system. The positivity of the numerical energy is also proved, and we present a fully discrete finite difference scheme that combines explicit and implicit integration methods. Finally, numerical simulations are given to confirm the theoretical results and show the efficiency of the proposed scheme.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential decay and numerical treatment for mixture problem with Fourier law and frictional damping\",\"authors\":\"Mauro L. Santos,&nbsp;Anderson J. A. Ramos,&nbsp;Anderson D. S. Campelo\",\"doi\":\"10.1007/s10444-025-10250-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates a finite difference numerical scheme to analyze the impact of the effects caused by the strong coupling of Fourier’s law on the solutions of the equations of motion of a mixture of two one-dimensional linear isotropic elastic materials with frictional damping. We first prove the existence of solutions and exponential stability. In the sequence, we analyze the semi-discrete problem in finite differences and we use the energy method to prove the exponential stabilization of the corresponding semi-discrete system. The positivity of the numerical energy is also proved, and we present a fully discrete finite difference scheme that combines explicit and implicit integration methods. Finally, numerical simulations are given to confirm the theoretical results and show the efficiency of the proposed scheme.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-025-10250-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10250-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文采用有限差分格式,分析了傅里叶定律的强耦合效应对两种一维线性各向同性弹性材料混合摩擦阻尼运动方程解的影响。首先证明了解的存在性和指数稳定性。在序列中,我们分析了有限差分下的半离散问题,并利用能量法证明了相应半离散系统的指数镇定性。证明了数值能量的正性,并给出了一种结合显式和隐式积分方法的完全离散有限差分格式。最后,通过数值仿真验证了理论结果,并验证了所提方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential decay and numerical treatment for mixture problem with Fourier law and frictional damping

This study investigates a finite difference numerical scheme to analyze the impact of the effects caused by the strong coupling of Fourier’s law on the solutions of the equations of motion of a mixture of two one-dimensional linear isotropic elastic materials with frictional damping. We first prove the existence of solutions and exponential stability. In the sequence, we analyze the semi-discrete problem in finite differences and we use the energy method to prove the exponential stabilization of the corresponding semi-discrete system. The positivity of the numerical energy is also proved, and we present a fully discrete finite difference scheme that combines explicit and implicit integration methods. Finally, numerical simulations are given to confirm the theoretical results and show the efficiency of the proposed scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信