Philipp Weder, Mariella Kast, Fernando Henríquez, Jan S. Hesthaven
{"title":"Galerkin neural network-POD for acoustic and electromagnetic wave propagation in parametric domains","authors":"Philipp Weder, Mariella Kast, Fernando Henríquez, Jan S. Hesthaven","doi":"10.1007/s10444-025-10245-9","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate reduced order models for acoustic and electromagnetic wave problems in parametrically defined domains. The parameter-to-solution maps are approximated following the so-called Galerkin POD-NN method, which combines the construction of a reduced basis via proper orthogonal decomposition (POD) with neural networks (NNs). As opposed to the standard reduced basis method, this approach allows for the swift and efficient evaluation of reduced order solutions for any given parametric input. As is customary in the analysis of problems in random or parametrically defined domains, we start by transporting the formulation to a reference domain. This yields a parameter-dependent variational problem set on parameter-independent functional spaces. In particular, we consider affine-parametric domain transformations characterized by a high-dimensional, possibly countably infinite, parametric input. To keep the number of evaluations of the high-fidelity solutions manageable, we propose using low-discrepancy sequences to sample the parameter space efficiently. Then, we train an NN to learn the coefficients in the reduced representation. This approach completely decouples the offline and online stages of the reduced basis paradigm. Numerical results for the three-dimensional Helmholtz and Maxwell equations confirm the method’s accuracy up to a certain barrier and show significant gains in online speed-up compared to the traditional Galerkin POD method.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-025-10245-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10245-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate reduced order models for acoustic and electromagnetic wave problems in parametrically defined domains. The parameter-to-solution maps are approximated following the so-called Galerkin POD-NN method, which combines the construction of a reduced basis via proper orthogonal decomposition (POD) with neural networks (NNs). As opposed to the standard reduced basis method, this approach allows for the swift and efficient evaluation of reduced order solutions for any given parametric input. As is customary in the analysis of problems in random or parametrically defined domains, we start by transporting the formulation to a reference domain. This yields a parameter-dependent variational problem set on parameter-independent functional spaces. In particular, we consider affine-parametric domain transformations characterized by a high-dimensional, possibly countably infinite, parametric input. To keep the number of evaluations of the high-fidelity solutions manageable, we propose using low-discrepancy sequences to sample the parameter space efficiently. Then, we train an NN to learn the coefficients in the reduced representation. This approach completely decouples the offline and online stages of the reduced basis paradigm. Numerical results for the three-dimensional Helmholtz and Maxwell equations confirm the method’s accuracy up to a certain barrier and show significant gains in online speed-up compared to the traditional Galerkin POD method.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.