A primal-dual adaptive finite element method for total variation minimization

IF 2.1 3区 数学 Q2 MATHEMATICS, APPLIED
Martin Alkämper, Stephan Hilb, Andreas Langer
{"title":"A primal-dual adaptive finite element method for total variation minimization","authors":"Martin Alkämper,&nbsp;Stephan Hilb,&nbsp;Andreas Langer","doi":"10.1007/s10444-025-10254-8","DOIUrl":null,"url":null,"abstract":"<div><p>Based on previous work, we extend a primal-dual semi-smooth Newton method for minimizing a general <span>\\(\\varvec{L^1}\\)</span>-<span>\\(\\varvec{L^2}\\)</span>-<span>\\(\\varvec{TV}\\)</span> functional over the space of functions of bounded variations by adaptivity in a finite element setting. For automatically generating an adaptive grid, we introduce indicators based on a-posteriori error estimates. Further, we discuss data interpolation methods on unstructured grids in the context of image processing and present a pixel-based interpolation method. The efficiency of our derived adaptive finite element scheme is demonstrated on image inpainting and the task of computing the optical flow in image sequences. In particular, for optical flow estimation, we derive an adaptive finite element coarse-to-fine scheme which allows resolving large displacements and speeds up the computing time significantly.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-025-10254-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10254-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Based on previous work, we extend a primal-dual semi-smooth Newton method for minimizing a general \(\varvec{L^1}\)-\(\varvec{L^2}\)-\(\varvec{TV}\) functional over the space of functions of bounded variations by adaptivity in a finite element setting. For automatically generating an adaptive grid, we introduce indicators based on a-posteriori error estimates. Further, we discuss data interpolation methods on unstructured grids in the context of image processing and present a pixel-based interpolation method. The efficiency of our derived adaptive finite element scheme is demonstrated on image inpainting and the task of computing the optical flow in image sequences. In particular, for optical flow estimation, we derive an adaptive finite element coarse-to-fine scheme which allows resolving large displacements and speeds up the computing time significantly.

全变分最小化的一种原对偶自适应有限元方法
在前人工作的基础上,我们扩展了一种原始-对偶半光滑牛顿方法,用于在有限单元设置下自适应最小化有界变分函数空间上的一般\(\varvec{L^1}\) - \(\varvec{L^2}\) - \(\varvec{TV}\)泛函。为了自动生成自适应网格,我们引入了基于后验误差估计的指标。在此基础上,讨论了基于图像处理的非结构化网格数据插值方法,提出了一种基于像素的插值方法。本文提出的自适应有限元方案在图像绘制和图像序列光流计算任务中的有效性得到了验证。特别是对于光流估计,我们推导了一种自适应的有限元粗到精方案,该方案可以解决大位移并显着加快计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信