Morley type virtual element method for von Kármán equations

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Devika Shylaja, Sarvesh Kumar
{"title":"Morley type virtual element method for von Kármán equations","authors":"Devika Shylaja,&nbsp;Sarvesh Kumar","doi":"10.1007/s10444-024-10158-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper analyses the nonconforming Morley type virtual element method to approximate a regular solution to the von Kármán equations  that describes bending of very thin elastic plates. Local existence and uniqueness of a discrete solution to the non-linear problem is discussed. A priori error estimate in the energy norm is established under minimal regularity assumptions on the exact solution. Error estimates in piecewise <span>\\(H^1\\)</span> and <span>\\(L^2\\)</span> norms are also derived. A working procedure to find an approximation for the discrete solution using Newton’s method is discussed. Numerical results that justify theoretical estimates are presented.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10158-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyses the nonconforming Morley type virtual element method to approximate a regular solution to the von Kármán equations  that describes bending of very thin elastic plates. Local existence and uniqueness of a discrete solution to the non-linear problem is discussed. A priori error estimate in the energy norm is established under minimal regularity assumptions on the exact solution. Error estimates in piecewise \(H^1\) and \(L^2\) norms are also derived. A working procedure to find an approximation for the discrete solution using Newton’s method is discussed. Numerical results that justify theoretical estimates are presented.

用于 von Kármán 方程的莫雷型虚拟元素法
本文分析了用于近似描述极薄弹性板弯曲的 von Kármán 方程正则解的非符合莫里型虚拟元素方法。讨论了非线性问题离散解的局部存在性和唯一性。在精确解的最小正则性假设下,建立了能量规范的先验误差估计。此外,还推导出了在\(H^1\) 和\(L^2\) 规范下的误差估计。讨论了使用牛顿法寻找离散解近似值的工作程序。给出了证明理论估计的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信