Families of annihilating skew-selfadjoint operators and their connection to Hilbert complexes

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Dirk Pauly, Rainer Picard
{"title":"Families of annihilating skew-selfadjoint operators and their connection to Hilbert complexes","authors":"Dirk Pauly,&nbsp;Rainer Picard","doi":"10.1007/s10444-024-10184-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this short note we show that Hilbert complexes are strongly related to what we shall call annihilating sets of skew-selfadjoint operators. This provides for a new perspective on the classical topic of Hilbert complexes viewed as families of commuting normal operators.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10184-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10184-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this short note we show that Hilbert complexes are strongly related to what we shall call annihilating sets of skew-selfadjoint operators. This provides for a new perspective on the classical topic of Hilbert complexes viewed as families of commuting normal operators.

湮灭偏自交算子族及其与希尔伯特复数的联系
在这篇短文中,我们将证明希尔伯特复数与我们称之为斜自交算子的湮没集密切相关。这就为把希尔伯特复数视为相交正算子族这一经典课题提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信