SVD-based algorithms for tensor wheel decomposition

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Mengyu Wang, Honghua Cui, Hanyu Li
{"title":"SVD-based algorithms for tensor wheel decomposition","authors":"Mengyu Wang,&nbsp;Honghua Cui,&nbsp;Hanyu Li","doi":"10.1007/s10444-024-10194-9","DOIUrl":null,"url":null,"abstract":"<div><p>Tensor wheel (TW) decomposition combines the popular tensor ring and fully connected tensor network decompositions and has achieved excellent performance in tensor completion problem. A standard method to compute this decomposition is the alternating least squares (ALS). However, it usually suffers from slow convergence and numerical instability. In this work, the fast and robust SVD-based algorithms are investigated. Based on a result on TW-ranks, we first propose a deterministic algorithm that can estimate the TW decomposition of the target tensor under a controllable accuracy. Then, the randomized versions of this algorithm are presented, which can be divided into two categories and allow various types of sketching. Numerical results on synthetic and real data show that our algorithms have much better performance than the ALS-based method and are also quite robust. In addition, with one SVD-based algorithm, we also numerically explore the variability of TW decomposition with respect to TW-ranks and the comparisons between TW decomposition and other famous formats in terms of the performance on approximation and compression.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10194-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor wheel (TW) decomposition combines the popular tensor ring and fully connected tensor network decompositions and has achieved excellent performance in tensor completion problem. A standard method to compute this decomposition is the alternating least squares (ALS). However, it usually suffers from slow convergence and numerical instability. In this work, the fast and robust SVD-based algorithms are investigated. Based on a result on TW-ranks, we first propose a deterministic algorithm that can estimate the TW decomposition of the target tensor under a controllable accuracy. Then, the randomized versions of this algorithm are presented, which can be divided into two categories and allow various types of sketching. Numerical results on synthetic and real data show that our algorithms have much better performance than the ALS-based method and are also quite robust. In addition, with one SVD-based algorithm, we also numerically explore the variability of TW decomposition with respect to TW-ranks and the comparisons between TW decomposition and other famous formats in terms of the performance on approximation and compression.

基于 SVD 的张量轮分解算法
张量轮分解(TW)结合了流行的张量环分解和全连接张量网络分解,在张量补全问题中取得了优异的性能。计算这种分解的标准方法是交替最小二乘法(ALS)。然而,它通常存在收敛速度慢和数值不稳定的问题。本文研究了基于 SVD 的快速稳健算法。基于 TW 秩的结果,我们首先提出了一种确定性算法,可以在可控精度下估计目标张量的 TW 分解。然后,介绍了该算法的随机版本,它们可分为两类,允许各种类型的草图。在合成数据和真实数据上的数值结果表明,我们的算法比基于 ALS 的方法性能更好,而且相当稳健。此外,通过一种基于 SVD 的算法,我们还从数值上探讨了 TW 分解与 TW 秩的可变性,以及 TW 分解与其他著名格式在逼近和压缩性能方面的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信