Bernard Kapidani, Melina Merkel, Sebastian Schöps, Rafael Vázquez
{"title":"用于涡流问题等距分析的同调发生器的任意阶样条表示法","authors":"Bernard Kapidani, Melina Merkel, Sebastian Schöps, Rafael Vázquez","doi":"10.1007/s10444-024-10181-0","DOIUrl":null,"url":null,"abstract":"<div><p>Common formulations of the eddy current problem involve either vector or scalar potentials, each with its own advantages and disadvantages. An impasse arises when using scalar potential-based formulations in the presence of conductors with non-trivial topology. A remedy is to augment the approximation spaces with generators of the first cohomology group. Most existing algorithms for this require a special, e.g., hierarchical, finite element basis construction. Using insights from de Rham complex approximation with splines, we show that additional conditions are here unnecessary. Spanning tree techniques can be adapted to operate on a hexahedral mesh resulting from isomorphisms between spline spaces of differential forms and de Rham complexes on an auxiliary control mesh.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10181-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Arbitrary order spline representation of cohomology generators for isogeometric analysis of eddy current problems\",\"authors\":\"Bernard Kapidani, Melina Merkel, Sebastian Schöps, Rafael Vázquez\",\"doi\":\"10.1007/s10444-024-10181-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Common formulations of the eddy current problem involve either vector or scalar potentials, each with its own advantages and disadvantages. An impasse arises when using scalar potential-based formulations in the presence of conductors with non-trivial topology. A remedy is to augment the approximation spaces with generators of the first cohomology group. Most existing algorithms for this require a special, e.g., hierarchical, finite element basis construction. Using insights from de Rham complex approximation with splines, we show that additional conditions are here unnecessary. Spanning tree techniques can be adapted to operate on a hexahedral mesh resulting from isomorphisms between spline spaces of differential forms and de Rham complexes on an auxiliary control mesh.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"50 5\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10444-024-10181-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10181-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10181-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
涡流问题的常见公式涉及矢量或标量电势,两者各有利弊。在存在非三维拓扑的导体时,使用基于标量势的公式会出现僵局。补救办法是用第一同调群的生成器来扩展近似空间。现有的大多数算法都需要特殊的,如分层的有限元基础构造。利用花键的德拉姆复近似的见解,我们证明在这里不需要额外的条件。生成树技术可用于辅助控制网格上的微分形式样条空间和 de Rham 复数之间的同构所产生的六面体网格。
Arbitrary order spline representation of cohomology generators for isogeometric analysis of eddy current problems
Common formulations of the eddy current problem involve either vector or scalar potentials, each with its own advantages and disadvantages. An impasse arises when using scalar potential-based formulations in the presence of conductors with non-trivial topology. A remedy is to augment the approximation spaces with generators of the first cohomology group. Most existing algorithms for this require a special, e.g., hierarchical, finite element basis construction. Using insights from de Rham complex approximation with splines, we show that additional conditions are here unnecessary. Spanning tree techniques can be adapted to operate on a hexahedral mesh resulting from isomorphisms between spline spaces of differential forms and de Rham complexes on an auxiliary control mesh.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.