{"title":"On a method of Hurwitz and its applications","authors":"W. Duke , Ö. Imamoḡlu , Á. Tóth","doi":"10.1016/j.aim.2024.109968","DOIUrl":"10.1016/j.aim.2024.109968","url":null,"abstract":"<div><div>We give class number formulas for binary cubic and <em>n</em>-ary quadratic forms using a method of Hurwitz. We also show how the same method can be applied to give identities for certain multiple zeta values attached to symmetric cones.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109968"},"PeriodicalIF":1.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel C. Isaksen , Hana Jia Kong , Guchuan Li , Yangyang Ruan , Heyi Zhu
{"title":"The C-motivic Adams-Novikov spectral sequence for topological modular forms","authors":"Daniel C. Isaksen , Hana Jia Kong , Guchuan Li , Yangyang Ruan , Heyi Zhu","doi":"10.1016/j.aim.2024.109966","DOIUrl":"10.1016/j.aim.2024.109966","url":null,"abstract":"<div><div>We analyze the <span><math><mi>C</mi></math></span>-motivic (and classical) Adams-Novikov spectral sequence for the <span><math><mi>C</mi></math></span>-motivic modular forms spectrum <em>mmf</em> (and for the classical topological modular forms spectrum <em>tmf</em>). We primarily use purely algebraic techniques, with a few exceptions. Along the way, we settle a previously unresolved detail about the multiplicative structure of the homotopy groups of <em>tmf</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109966"},"PeriodicalIF":1.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-algebraic geometrically trivial cohomology classes over finite fields","authors":"Federico Scavia , Fumiaki Suzuki","doi":"10.1016/j.aim.2024.109964","DOIUrl":"10.1016/j.aim.2024.109964","url":null,"abstract":"<div><div>We give the first examples of smooth projective varieties <em>X</em> over a finite field <span><math><mi>F</mi></math></span> admitting a non-algebraic torsion <em>ℓ</em>-adic cohomology class of degree 4 which vanishes over <span><math><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></math></span>. We use them to show that two versions of the integral Tate conjecture over <span><math><mi>F</mi></math></span> are not equivalent to one another and that a fundamental exact sequence of Colliot-Thélène and Kahn does not necessarily split. Some of our examples have dimension 4, and are the first known examples of fourfolds with non-vanishing <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>nr</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109964"},"PeriodicalIF":1.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Zeta functions for spherical tits buildings of finite general linear groups","authors":"Jianhao Shen","doi":"10.1016/j.aim.2024.109965","DOIUrl":"10.1016/j.aim.2024.109965","url":null,"abstract":"<div><div>In this paper, we define edge zeta functions for spherical buildings associated with finite general linear groups. We derive elegant formulas for these zeta functions and reveal patterns of eigenvalues of these buildings, by introducing and applying insightful tools including digraphs <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, cyclic <em>n</em>-partite graphs, partite-transitive group actions, and Springer's theorem on Hecke algebras.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109965"},"PeriodicalIF":1.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The category of topological spaces and open maps does not have products","authors":"Guram Bezhanishvili , Andre Kornell","doi":"10.1016/j.aim.2024.109963","DOIUrl":"10.1016/j.aim.2024.109963","url":null,"abstract":"<div><div>We prove that the category of topological spaces and open maps does not have binary products, thus resolving the Esakia problem in the negative. We also prove that the category of Kripke frames does not have binary products and that the category of complete Heyting algebras does not have binary coproducts.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109963"},"PeriodicalIF":1.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From local nets to Euler elements","authors":"Vincenzo Morinelli, Karl-Hermann Neeb","doi":"10.1016/j.aim.2024.109960","DOIUrl":"10.1016/j.aim.2024.109960","url":null,"abstract":"<div><div>Various aspects of the geometric setting of Algebraic Quantum Field Theory (AQFT) models related to representations of the Poincaré group can be studied for general Lie groups, whose Lie algebra contains an Euler element, i.e., ad <em>h</em> is diagonalizable with eigenvalues in <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>. This has been explored by the authors and their collaborators during recent years. A key property in this construction is the Bisognano–Wichmann property (thermal property for wedge region algebras) concerning the geometric implementation of modular groups of local algebras.</div><div>In the present paper we prove that under a natural regularity condition, geometrically implemented modular groups arising from the Bisognano–Wichmann property are always generated by Euler elements. We also show the converse, namely that in presence of Euler elements and the Bisognano–Wichmann property, regularity and localizability hold in a quite general setting. Lastly we show that, in this generalized AQFT, in the vacuum representation, under analogous assumptions (regularity and Bisognano–Wichmann), the von Neumann algebras associated to wedge regions are type III<sub>1</sub> factors, a property that is well-known in the AQFT context.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109960"},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A motivic pairing and the Mellin transform in function fields","authors":"Nathan Green","doi":"10.1016/j.aim.2024.109962","DOIUrl":"10.1016/j.aim.2024.109962","url":null,"abstract":"<div><div>We define two pairings relating the <em>A</em>-motive with the dual <em>A</em>-motive of an abelian Anderson <em>A</em>-module. We show that specializations of these pairings give the exponential and logarithm functions of this Anderson <em>A</em>-module, and we use these specializations to give precise formulas for the coefficients of the exponential and logarithm functions. We then use these pairings to express the exponential and logarithm functions as evaluations of certain infinite products. As an application of these ideas, we prove an analogue of the Mellin transform formula for the Riemann zeta function in the case of Carlitz zeta values. We also give an example showing how our results apply to Carlitz multiple zeta values.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109962"},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximation properties for dynamical W⁎-correspondences","authors":"K. De Commer, J. De Ro","doi":"10.1016/j.aim.2024.109958","DOIUrl":"10.1016/j.aim.2024.109958","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a locally compact quantum group, and <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> von Neumann algebras on which <span><math><mi>G</mi></math></span> acts. We refer to these as <span><math><mi>G</mi></math></span><em>-dynamical W</em><sup>⁎</sup><em>-algebras</em>. We make a study of <span><math><mi>G</mi></math></span>-equivariant <em>A</em>-<em>B</em>-correspondences, that is, Hilbert spaces <span><math><mi>H</mi></math></span> with an <em>A</em>-<em>B</em>-bimodule structure by ⁎-preserving normal maps, and equipped with a unitary representation of <span><math><mi>G</mi></math></span> which is equivariant with respect to the above bimodule structure. Such structures are a Hilbert space version of the theory of <span><math><mi>G</mi></math></span>-equivariant Hilbert C<sup>⁎</sup>-bimodules. We show that there is a well-defined Fell topology on equivariant correspondences, and use this to formulate approximation properties for them. Within this formalism, we then characterize amenability of the action of a locally compact group on a von Neumann algebra, using recent results due to Bearden and Crann. We further consider natural operations on equivariant correspondences such as taking opposites, composites and crossed products, and examine the continuity of these operations with respect to the Fell topology.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109958"},"PeriodicalIF":1.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Curvature bound for Lp Minkowski problem","authors":"Kyeongsu Choi , Minhyun Kim , Taehun Lee","doi":"10.1016/j.aim.2024.109959","DOIUrl":"10.1016/j.aim.2024.109959","url":null,"abstract":"<div><div>We establish curvature estimates for anisotropic Gauss curvature flows. By using this, we show that given a measure <em>μ</em> with a positive smooth density <em>f</em>, any solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mi>p</mi><mo>≤</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> is a hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span>. This is a sharp result because for each <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> there exists a convex hypersurface of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>+</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></math></span> which is a solution to the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> Minkowski problem for a positive smooth density <em>f</em>. In particular, the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> regularity is optimal in the case <span><math><mi>p</mi><mo>=</mo><mo>−</mo><mi>n</mi><mo>+</mo><mn>2</mn></math></span> which includes the logarithmic Minkowski problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109959"},"PeriodicalIF":1.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Arithmetic Demailly approximation theorem","authors":"Binggang Qu , Hang Yin","doi":"10.1016/j.aim.2024.109961","DOIUrl":"10.1016/j.aim.2024.109961","url":null,"abstract":"<div><div>We generalize the Demailly approximation theorem from complex geometry to Arakelov geometry.</div><div>As an application, let <span><math><mi>X</mi><mo>/</mo><mi>Q</mi></math></span> be an integral projective variety and <span><math><mover><mrow><mi>N</mi></mrow><mo>‾</mo></mover></math></span> be an adelic line bundle on <em>X</em>. We prove that <span><math><mi>ess</mi><mo>(</mo><mover><mrow><mi>N</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>≥</mo><mn>0</mn></math></span> ⟹ <span><math><mover><mrow><mi>N</mi></mrow><mo>‾</mo></mover></math></span> pseudo-effective. This was proved in <span><span>[1]</span></span>, assuming <span><math><mover><mrow><mi>N</mi></mrow><mo>‾</mo></mover></math></span> relatively semipositive.</div><div>We show in the appendix that the above assertion is also true for adelic line bundles on quasi-projective varieties, under the framework of <span><span>[17]</span></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109961"},"PeriodicalIF":1.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}