{"title":"Lower bounds on Loewy lengths of modules of finite projective dimension","authors":"Nawaj KC , Josh Pollitz","doi":"10.1016/j.aim.2025.110309","DOIUrl":null,"url":null,"abstract":"<div><div>This article is concerned with nonzero modules of finite length and finite projective dimension over a local ring. We show the Loewy length of such a module is larger than the regularity of the ring whenever the ring is strict Cohen-Macaulay, establishing a conjecture of Corso–Huneke–Polini–Ulrich for such rings. In fact, we show the stronger result that the Loewy length of a nonzero module of finite flat dimension is at least the regularity for strict Cohen-Macaulay rings, which significantly strengthens a theorem of Avramov–Buchweitz–Iyengar–Miller. As an application we simultaneously verify a Lech-like conjecture, comparing generalized Loewy length along flat local extensions, and a conjecture of Hanes for strict Cohen-Macaulay rings. Finally, we also give notable improvements to known lower bounds for Loewy lengths without the strict Cohen-Macaulay assumption. The strongest general bounds we achieve are over complete intersection rings.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"473 ","pages":"Article 110309"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002075","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This article is concerned with nonzero modules of finite length and finite projective dimension over a local ring. We show the Loewy length of such a module is larger than the regularity of the ring whenever the ring is strict Cohen-Macaulay, establishing a conjecture of Corso–Huneke–Polini–Ulrich for such rings. In fact, we show the stronger result that the Loewy length of a nonzero module of finite flat dimension is at least the regularity for strict Cohen-Macaulay rings, which significantly strengthens a theorem of Avramov–Buchweitz–Iyengar–Miller. As an application we simultaneously verify a Lech-like conjecture, comparing generalized Loewy length along flat local extensions, and a conjecture of Hanes for strict Cohen-Macaulay rings. Finally, we also give notable improvements to known lower bounds for Loewy lengths without the strict Cohen-Macaulay assumption. The strongest general bounds we achieve are over complete intersection rings.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.