从拉马努金丢失的笔记本中得到质量的周期函数

IF 1.5 1区 数学 Q1 MATHEMATICS
YoungJu Choie , Rahul Kumar
{"title":"从拉马努金丢失的笔记本中得到质量的周期函数","authors":"YoungJu Choie ,&nbsp;Rahul Kumar","doi":"10.1016/j.aim.2025.110317","DOIUrl":null,"url":null,"abstract":"<div><div>The Lost Notebook of Ramanujan contains a number of beautiful formulas, one of which can be found on its page 220. It involves an interesting function, which we denote as <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. In this paper, we show that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> belongs to the category of period functions as it satisfies the period relations of Maass forms in the sense of Lewis and Zagier <span><span>[11]</span></span>. Hence, we refer to <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> as the <em>Ramanujan period function</em>. Moreover, one of the salient aspects of the Ramanujan period function <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> that we found out is that it is a Hecke eigenfunction under the action of Hecke operators on the space of periods. We also establish that it naturally appears in a Kronecker limit formula of a certain zeta function, revealing its connections to various topics. Finally, we generalize <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> to include a parameter <em>s</em>, connecting our work to the broader theory of period functions developed by Bettin and Conrey <span><span>[4]</span></span> and Lewis and Zagier <span><span>[11]</span></span>. We emphasize that Ramanujan was the first to study this function, marking the beginning of the study of period functions.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"474 ","pages":"Article 110317"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Period function of Maass forms from Ramanujan's lost notebook\",\"authors\":\"YoungJu Choie ,&nbsp;Rahul Kumar\",\"doi\":\"10.1016/j.aim.2025.110317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Lost Notebook of Ramanujan contains a number of beautiful formulas, one of which can be found on its page 220. It involves an interesting function, which we denote as <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. In this paper, we show that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> belongs to the category of period functions as it satisfies the period relations of Maass forms in the sense of Lewis and Zagier <span><span>[11]</span></span>. Hence, we refer to <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> as the <em>Ramanujan period function</em>. Moreover, one of the salient aspects of the Ramanujan period function <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> that we found out is that it is a Hecke eigenfunction under the action of Hecke operators on the space of periods. We also establish that it naturally appears in a Kronecker limit formula of a certain zeta function, revealing its connections to various topics. Finally, we generalize <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> to include a parameter <em>s</em>, connecting our work to the broader theory of period functions developed by Bettin and Conrey <span><span>[4]</span></span> and Lewis and Zagier <span><span>[11]</span></span>. We emphasize that Ramanujan was the first to study this function, marking the beginning of the study of period functions.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"474 \",\"pages\":\"Article 110317\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825002154\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002154","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

《遗失的拉马努金笔记》包含了许多漂亮的公式,其中一个可以在220页找到。它涉及到一个有趣的函数,我们记作F1(x)本文证明了F1(x)在Lewis和Zagier[11]意义上满足质量形式的周期关系,属于周期函数范畴。因此,我们称F1(x)为拉马努金周期函数。此外,我们发现了拉马努金周期函数F1(x)的一个显著特征是,在周期空间上的Hecke算子作用下,它是一个Hecke特征函数。我们还建立了它自然地出现在某zeta函数的Kronecker极限公式中,揭示了它与各种主题的联系。最后,我们将F1(x)推广到包含参数s,将我们的工作与Bettin和Conrey[4]以及Lewis和Zagier[11]开发的更广泛的周期函数理论联系起来。我们强调,拉马努金是第一个研究这个函数的人,标志着周期函数研究的开始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Period function of Maass forms from Ramanujan's lost notebook
The Lost Notebook of Ramanujan contains a number of beautiful formulas, one of which can be found on its page 220. It involves an interesting function, which we denote as F1(x). In this paper, we show that F1(x) belongs to the category of period functions as it satisfies the period relations of Maass forms in the sense of Lewis and Zagier [11]. Hence, we refer to F1(x) as the Ramanujan period function. Moreover, one of the salient aspects of the Ramanujan period function F1(x) that we found out is that it is a Hecke eigenfunction under the action of Hecke operators on the space of periods. We also establish that it naturally appears in a Kronecker limit formula of a certain zeta function, revealing its connections to various topics. Finally, we generalize F1(x) to include a parameter s, connecting our work to the broader theory of period functions developed by Bettin and Conrey [4] and Lewis and Zagier [11]. We emphasize that Ramanujan was the first to study this function, marking the beginning of the study of period functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信