仿射quermassintegral和甚至Minkowski估值

IF 1.5 1区 数学 Q1 MATHEMATICS
Georg C. Hofstätter, Philipp Kniefacz, Franz E. Schuster
{"title":"仿射quermassintegral和甚至Minkowski估值","authors":"Georg C. Hofstätter,&nbsp;Philipp Kniefacz,&nbsp;Franz E. Schuster","doi":"10.1016/j.aim.2025.110285","DOIUrl":null,"url":null,"abstract":"<div><div>It is shown that each continuous even Minkowski valuation on convex bodies of degree <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> intertwining rigid motions is obtained from convolution of the <em>i</em>th projection function with a unique spherical Crofton distribution. In case of a non-negative distribution, the polar volume of the associated Minkowski valuation gives rise to an isoperimetric inequality which strengthens the classical relation between the <em>i</em>th quermassintegral and the volume. This large family of inequalities unifies earlier results obtained for <span><math><mi>i</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. In these cases, isoperimetric inequalities for affine quermassintegrals, specifically the Blaschke–Santaló inequality for <span><math><mi>i</mi><mo>=</mo><mn>1</mn></math></span> and the Petty projection inequality for <span><math><mi>i</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, were proven to be the strongest inequalities. An analogous result for the intermediate degrees is established here. Finally, a new sufficient condition for the existence of maximizers for the polar volume of Minkowski valuations intertwining rigid motions reveals unexpected examples of volume inequalities having asymmetric extremizers.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"473 ","pages":"Article 110285"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affine quermassintegrals and even Minkowski valuations\",\"authors\":\"Georg C. Hofstätter,&nbsp;Philipp Kniefacz,&nbsp;Franz E. Schuster\",\"doi\":\"10.1016/j.aim.2025.110285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is shown that each continuous even Minkowski valuation on convex bodies of degree <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> intertwining rigid motions is obtained from convolution of the <em>i</em>th projection function with a unique spherical Crofton distribution. In case of a non-negative distribution, the polar volume of the associated Minkowski valuation gives rise to an isoperimetric inequality which strengthens the classical relation between the <em>i</em>th quermassintegral and the volume. This large family of inequalities unifies earlier results obtained for <span><math><mi>i</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. In these cases, isoperimetric inequalities for affine quermassintegrals, specifically the Blaschke–Santaló inequality for <span><math><mi>i</mi><mo>=</mo><mn>1</mn></math></span> and the Petty projection inequality for <span><math><mi>i</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, were proven to be the strongest inequalities. An analogous result for the intermediate degrees is established here. Finally, a new sufficient condition for the existence of maximizers for the polar volume of Minkowski valuations intertwining rigid motions reveals unexpected examples of volume inequalities having asymmetric extremizers.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"473 \",\"pages\":\"Article 110285\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825001835\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001835","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了在1≤i≤n−1阶交织刚性运动的凸体上的每一个连续偶Minkowski值是由具有唯一球形Crofton分布的第i投影函数的卷积得到的。在非负分布的情况下,相关Minkowski值的极体积产生了一个等周不等式,它加强了第i个quermassintegral与体积之间的经典关系。这一大族不等式统一了先前对i=1和n - 1的结果。在这些情况下,仿射quermassintegral的等周不等式,特别是i=1的Blaschke-Santaló不等式和i=n - 1的Petty投影不等式,被证明是最强的不等式。本文建立了中间度的类似结果。最后,给出了Minkowski值的极坐标体积存在极值的一个新的充分条件,揭示了具有非对称极值的体积不等式的意想不到的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affine quermassintegrals and even Minkowski valuations
It is shown that each continuous even Minkowski valuation on convex bodies of degree 1in1 intertwining rigid motions is obtained from convolution of the ith projection function with a unique spherical Crofton distribution. In case of a non-negative distribution, the polar volume of the associated Minkowski valuation gives rise to an isoperimetric inequality which strengthens the classical relation between the ith quermassintegral and the volume. This large family of inequalities unifies earlier results obtained for i=1 and n1. In these cases, isoperimetric inequalities for affine quermassintegrals, specifically the Blaschke–Santaló inequality for i=1 and the Petty projection inequality for i=n1, were proven to be the strongest inequalities. An analogous result for the intermediate degrees is established here. Finally, a new sufficient condition for the existence of maximizers for the polar volume of Minkowski valuations intertwining rigid motions reveals unexpected examples of volume inequalities having asymmetric extremizers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信