Projection algebras and free projection- and idempotent-generated regular ⁎-semigroups

IF 1.5 1区 数学 Q1 MATHEMATICS
James East , Robert D. Gray , P.A. Azeef Muhammed , Nik Ruškuc
{"title":"Projection algebras and free projection- and idempotent-generated regular ⁎-semigroups","authors":"James East ,&nbsp;Robert D. Gray ,&nbsp;P.A. Azeef Muhammed ,&nbsp;Nik Ruškuc","doi":"10.1016/j.aim.2025.110288","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this paper is to introduce a new family of semigroups—the free projection-generated regular ⁎-semigroups—and initiate their systematic study. Such a semigroup <span><math><mtext>PG</mtext><mo>(</mo><mi>P</mi><mo>)</mo></math></span> is constructed from a projection algebra <em>P</em>, using the recent groupoid approach to regular ⁎-semigroups. The assignment <span><math><mi>P</mi><mo>↦</mo><mtext>PG</mtext><mo>(</mo><mi>P</mi><mo>)</mo></math></span> is a left adjoint to the forgetful functor that maps a regular ⁎-semigroup <em>S</em> to its projection algebra <span><math><mi>P</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. In fact, the category of projection algebras is coreflective in the category of regular ⁎-semigroups. The algebra <span><math><mi>P</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span> uniquely determines the biordered structure of the idempotents <span><math><mi>E</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span>, up to isomorphism, and this leads to a category equivalence between projection algebras and regular ⁎-biordered sets. As a consequence, <span><math><mtext>PG</mtext><mo>(</mo><mi>P</mi><mo>)</mo></math></span> can be viewed as a quotient of the classical free idempotent-generated (regular) semigroups <span><math><mtext>IG</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span> and <span><math><mtext>RIG</mtext><mo>(</mo><mi>E</mi><mo>)</mo></math></span>, where <span><math><mi>E</mi><mo>=</mo><mi>E</mi><mo>(</mo><mtext>PG</mtext><mo>(</mo><mi>P</mi><mo>)</mo><mo>)</mo></math></span>; this is witnessed by a number of presentations in terms of generators and defining relations. The semigroup <span><math><mtext>PG</mtext><mo>(</mo><mi>P</mi><mo>)</mo></math></span> can also be interpreted topologically, through a natural link to the fundamental groupoid of a simplicial complex explicitly constructed from <em>P</em>. The above theory is illustrated on a number of examples. In one direction, the free construction applied to the projection algebras of adjacency semigroups yields a new family of graph-based path semigroups. In another, it turns out that, remarkably, the Temperley–Lieb monoid <span><math><mi>T</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the free regular ⁎-semigroup over its own projection algebra <span><math><mi>P</mi><mo>(</mo><mi>T</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"473 ","pages":"Article 110288"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001860","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to introduce a new family of semigroups—the free projection-generated regular ⁎-semigroups—and initiate their systematic study. Such a semigroup PG(P) is constructed from a projection algebra P, using the recent groupoid approach to regular ⁎-semigroups. The assignment PPG(P) is a left adjoint to the forgetful functor that maps a regular ⁎-semigroup S to its projection algebra P(S). In fact, the category of projection algebras is coreflective in the category of regular ⁎-semigroups. The algebra P(S) uniquely determines the biordered structure of the idempotents E(S), up to isomorphism, and this leads to a category equivalence between projection algebras and regular ⁎-biordered sets. As a consequence, PG(P) can be viewed as a quotient of the classical free idempotent-generated (regular) semigroups IG(E) and RIG(E), where E=E(PG(P)); this is witnessed by a number of presentations in terms of generators and defining relations. The semigroup PG(P) can also be interpreted topologically, through a natural link to the fundamental groupoid of a simplicial complex explicitly constructed from P. The above theory is illustrated on a number of examples. In one direction, the free construction applied to the projection algebras of adjacency semigroups yields a new family of graph-based path semigroups. In another, it turns out that, remarkably, the Temperley–Lieb monoid TLn is the free regular ⁎-semigroup over its own projection algebra P(TLn).
投影代数与自由投影-幂等生成的正则半群
本文的目的是引入一类新的半群——自由投影生成的正则半群,并开始对它们进行系统的研究。这样的半群PG(P)是由投影代数P构造的,使用了最近的正则的类群方法。赋值P∈PG(P)是遗忘函子的左伴随子,该函子将正则半群S映射到它的投影代数P(S)。事实上,投影代数的范畴在正则 -半群的范畴中是共反射的。代数P(S)唯一地决定了幂等元E(S)的双序结构,直到同构,这导致了投影代数与正则的双序集之间的范畴等价。因此,PG(P)可以看作经典自由幂等生成(正则)半群IG(E)和RIG(E)的商,其中E=E(PG(P));许多关于生成器和定义关系的介绍都证明了这一点。半群PG(P)也可以通过与显式由P构造的简单复合体的基本群的自然联系从拓扑上解释。在一个方向上,将自由构造应用于邻接半群的投影代数,得到了一类新的基于图的路径半群。在另一种情况下,我们发现,Temperley-Lieb单群TLn是它自己的投影代数P(TLn)上的自由正则-半群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信