On subspaces of indecomposable Banach spaces

IF 1.5 1区 数学 Q1 MATHEMATICS
Piotr Koszmider, Zdeněk Silber
{"title":"On subspaces of indecomposable Banach spaces","authors":"Piotr Koszmider,&nbsp;Zdeněk Silber","doi":"10.1016/j.aim.2025.110292","DOIUrl":null,"url":null,"abstract":"<div><div>We address the following question: what is the class of Banach spaces isomorphic to subspaces of indecomposable Banach spaces? We show that this class includes all Banach spaces of density not bigger than the continuum which do not admit <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> as a quotient (equivalently do not admit a subspace isomorphic to <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>c</mi><mo>)</mo></math></span>). This includes all Asplund spaces and all weakly Lindelöf determined Banach spaces of density not bigger than the continuum. However, we also show that this class includes some Banach spaces admitting <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> as a quotient. This sheds some light on the question asked in the paper [2] of Argyros and Haydon whether all Banach spaces not containing <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> embed in some indecomposable Banach spaces. Our method of constructing indecomposable Banach spaces above a given Banach space is a considerable modification of the method of constructing Banach spaces of continuous functions with few<sup>⁎</sup> operators developed before by the first-named author.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"473 ","pages":"Article 110292"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001902","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We address the following question: what is the class of Banach spaces isomorphic to subspaces of indecomposable Banach spaces? We show that this class includes all Banach spaces of density not bigger than the continuum which do not admit as a quotient (equivalently do not admit a subspace isomorphic to 1(c)). This includes all Asplund spaces and all weakly Lindelöf determined Banach spaces of density not bigger than the continuum. However, we also show that this class includes some Banach spaces admitting as a quotient. This sheds some light on the question asked in the paper [2] of Argyros and Haydon whether all Banach spaces not containing embed in some indecomposable Banach spaces. Our method of constructing indecomposable Banach spaces above a given Banach space is a considerable modification of the method of constructing Banach spaces of continuous functions with few operators developed before by the first-named author.
不可分解巴拿赫空间的子空间
我们讨论了以下问题:什么是与不可分解的巴拿赫空间的子空间同构的巴拿赫空间?我们证明了这类包含了密度不大于连续统且不允许作为商(即不允许与1(c)同构的子空间)的所有Banach空间。这包括所有Asplund空间和所有密度不大于连续统的弱Lindelöf确定的Banach空间。然而,我们也证明了该类包含一些允许r∞为商的巴拿赫空间。这对Argyros和Haydon在[2]论文中提出的所有不含∞的巴拿赫空间是否嵌入在一些不可分解的巴拿赫空间中的问题有一定的启发。我们在给定的Banach空间上构造不可分解的Banach空间的方法是对先前由第一作者开发的具有很少的算子的连续函数的Banach空间的构造方法的一个相当大的修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信