曲线模空间的对数同义环

IF 1.5 1区 数学 Q1 MATHEMATICS
Rahul Pandharipande, Dhruv Ranganathan, Johannes Schmitt, Pim Spelier
{"title":"曲线模空间的对数同义环","authors":"Rahul Pandharipande,&nbsp;Dhruv Ranganathan,&nbsp;Johannes Schmitt,&nbsp;Pim Spelier","doi":"10.1016/j.aim.2025.110291","DOIUrl":null,"url":null,"abstract":"<div><div>We define the logarithmic tautological rings of the moduli spaces of Deligne–Mumford stable curves (together with a set of additive generators lifting the decorated strata classes of the standard tautological rings). While these algebras are infinite dimensional, a connection to polyhedral combinatorics via a new theory of homological piecewise polynomials allows an effective study. A complete calculation is given in genus 0 via the algebra of piecewise polynomials on the cone stack of the associated Artin fan (lifting Keel's presentation of the Chow ring of <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span>). Counterexamples to the simplest generalizations in genus 1 are presented. We show, however, that the structure of the log tautological rings is determined by the complete knowledge of all relations in the standard tautological rings of the moduli spaces of curves. In particular, Pixton's conjecture concerning relations in the standard tautological rings lifts to a complete conjecture for relations in the log tautological rings of the moduli spaces of curves. Several open questions are discussed.</div><div>We develop the entire theory of logarithmic tautological classes in the context of arbitrary smooth normal crossings pairs <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> with explicit formulas for intersection products. As a special case, we give an explicit set of additive generators of the full logarithmic Chow ring of <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> in terms of Chow classes on the strata of <em>X</em> and piecewise polynomials on the cone stack.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"474 ","pages":"Article 110291"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logarithmic tautological rings of the moduli spaces of curves\",\"authors\":\"Rahul Pandharipande,&nbsp;Dhruv Ranganathan,&nbsp;Johannes Schmitt,&nbsp;Pim Spelier\",\"doi\":\"10.1016/j.aim.2025.110291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We define the logarithmic tautological rings of the moduli spaces of Deligne–Mumford stable curves (together with a set of additive generators lifting the decorated strata classes of the standard tautological rings). While these algebras are infinite dimensional, a connection to polyhedral combinatorics via a new theory of homological piecewise polynomials allows an effective study. A complete calculation is given in genus 0 via the algebra of piecewise polynomials on the cone stack of the associated Artin fan (lifting Keel's presentation of the Chow ring of <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span>). Counterexamples to the simplest generalizations in genus 1 are presented. We show, however, that the structure of the log tautological rings is determined by the complete knowledge of all relations in the standard tautological rings of the moduli spaces of curves. In particular, Pixton's conjecture concerning relations in the standard tautological rings lifts to a complete conjecture for relations in the log tautological rings of the moduli spaces of curves. Several open questions are discussed.</div><div>We develop the entire theory of logarithmic tautological classes in the context of arbitrary smooth normal crossings pairs <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> with explicit formulas for intersection products. As a special case, we give an explicit set of additive generators of the full logarithmic Chow ring of <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> in terms of Chow classes on the strata of <em>X</em> and piecewise polynomials on the cone stack.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"474 \",\"pages\":\"Article 110291\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825001896\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001896","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了delign - mumford稳定曲线模空间的对数同义环(以及一组提升标准同义环装饰层类的加性生成器)。虽然这些代数是无限维的,但通过同调分段多项式的新理论与多面体组合的联系可以进行有效的研究。通过在关联的Artin风机的圆锥堆上分段多项式的代数(举龙骨表示M - 0,n的Chow环)以属0给出了一个完整的计算。给出了属1中最简单概括的反例。然而,我们证明对数同义环的结构是由曲线模空间的标准同义环中所有关系的完全知识决定的。特别地,Pixton关于标准同义环中关系的猜想提升为关于曲线模空间的对数同义环中关系的完全猜想。讨论了几个悬而未决的问题。我们在任意光滑法向交叉对(X,D)的背景下发展了对数同义类的整个理论,并给出了交积的显式公式。作为一种特殊情况,我们给出了(X,D)的全对数Chow环在X层上的Chow类和锥叠上的分段多项式的加性生成器的显式集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logarithmic tautological rings of the moduli spaces of curves
We define the logarithmic tautological rings of the moduli spaces of Deligne–Mumford stable curves (together with a set of additive generators lifting the decorated strata classes of the standard tautological rings). While these algebras are infinite dimensional, a connection to polyhedral combinatorics via a new theory of homological piecewise polynomials allows an effective study. A complete calculation is given in genus 0 via the algebra of piecewise polynomials on the cone stack of the associated Artin fan (lifting Keel's presentation of the Chow ring of M0,n). Counterexamples to the simplest generalizations in genus 1 are presented. We show, however, that the structure of the log tautological rings is determined by the complete knowledge of all relations in the standard tautological rings of the moduli spaces of curves. In particular, Pixton's conjecture concerning relations in the standard tautological rings lifts to a complete conjecture for relations in the log tautological rings of the moduli spaces of curves. Several open questions are discussed.
We develop the entire theory of logarithmic tautological classes in the context of arbitrary smooth normal crossings pairs (X,D) with explicit formulas for intersection products. As a special case, we give an explicit set of additive generators of the full logarithmic Chow ring of (X,D) in terms of Chow classes on the strata of X and piecewise polynomials on the cone stack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信