{"title":"Units of twisted group rings and their correlations to classical group rings","authors":"Geoffrey Janssens , Eric Jespers , Ofir Schnabel","doi":"10.1016/j.aim.2024.109983","DOIUrl":"10.1016/j.aim.2024.109983","url":null,"abstract":"<div><div>This paper is centred around the classical problem of extracting properties of a finite group <em>G</em> from the ring isomorphism class of its integral group ring <span><math><mi>Z</mi><mi>G</mi></math></span>. This problem is considered via describing the unit group <span><math><mi>U</mi><mo>(</mo><mi>Z</mi><mi>G</mi><mo>)</mo></math></span> generically for a finite group. Since the ‘90<em>s</em>’ several well known generic constructions of units are known to generate a subgroup of finite index in <span><math><mi>U</mi><mo>(</mo><mi>Z</mi><mi>G</mi><mo>)</mo></math></span> if <span><math><mi>Q</mi><mi>G</mi></math></span> does not have so-called exceptional simple epimorphic images, e.g. <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Q</mi><mo>)</mo></math></span>. However it remained a major open problem to find a <em>generic</em> construction under the presence of the latter type of simple images. In this article we obtain such generic construction of units. Moreover, this new construction also exhibits new properties, such as providing generically free subgroups of large rank. As an application we answer positively for several classes of groups recent conjectures on the rank and the periodic elements of the abelianisation <span><math><mi>U</mi><msup><mrow><mo>(</mo><mi>Z</mi><mi>G</mi><mo>)</mo></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msup></math></span>. To obtain all this, we investigate the group ring <em>R</em>Γ of an extension Γ of some normal subgroup <em>N</em> by a group <em>G</em>, over a domain <em>R</em>. More precisely, we obtain a direct sum decomposition of the (twisted) group algebra of Γ over the fraction field <em>F</em> of <em>R</em> in terms of various twisted group rings of <em>G</em> over finite extensions of <em>F</em>. Furthermore, concrete information on the kernel and cokernel of the associated projections is obtained. Along the way we also launch the investigations of the unit group of twisted group rings and of <span><math><mi>U</mi><mo>(</mo><mi>R</mi><mi>Γ</mi><mo>)</mo></math></span> via twisted group rings.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Truncated pushforwards and refined unramified cohomology","authors":"Theodosis Alexandrou , Stefan Schreieder","doi":"10.1016/j.aim.2024.109979","DOIUrl":"10.1016/j.aim.2024.109979","url":null,"abstract":"<div><div>For a large class of cohomology theories, we prove that refined unramified cohomology is canonically isomorphic to the hypercohomology of a natural truncated complex of Zariski sheaves. This generalizes a classical result of Bloch and Ogus and solves a conjecture of Kok and Zhou.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frobenius representation type for invariant rings of finite groups","authors":"Mitsuyasu Hashimoto , Anurag K. Singh","doi":"10.1016/j.aim.2024.109978","DOIUrl":"10.1016/j.aim.2024.109978","url":null,"abstract":"<div><div>Let <em>V</em> be a finite rank vector space over a perfect field of characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, and let <em>G</em> be a finite subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>. If <em>V</em> is a permutation representation of <em>G</em>, or more generally a monomial representation, we prove that the ring of invariants <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> has finite Frobenius representation type. We also construct an example with <em>V</em> a finite rank vector space over the algebraic closure of the function field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, and <em>G</em> an elementary abelian subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, such that the invariant ring <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> does not have finite Frobenius representation type.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotic behavior of complete conformal metric near singular boundary","authors":"Weiming Shen, Yue Wang","doi":"10.1016/j.aim.2024.109977","DOIUrl":"10.1016/j.aim.2024.109977","url":null,"abstract":"<div><div>The boundary behavior of the singular Yamabe problem has been extensively studied near sufficiently smooth boundaries, while less is known about the asymptotic behavior of solutions near singular boundaries. In this paper, we study the asymptotic behaviors of solutions to the singular Yamabe problem with negative constant scalar curvature near singular boundaries and derive the optimal estimates for the background metric which is not necessarily conformally flat. In particular, we prove that the solutions are well approximated by the solutions in tangent cones at singular points on the boundaries.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Milnor-Witt motivic cohomology and linear algebraic groups","authors":"Keyao Peng","doi":"10.1016/j.aim.2024.109973","DOIUrl":"10.1016/j.aim.2024.109973","url":null,"abstract":"<div><div>This article presents two key computations in MW-motivic cohomology. Firstly, we compute the MW-motivic cohomology of the symplectic groups <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span> for any <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> using the Sp-orientation and the associated Borel classes.</div><div>Secondly, following the classical computations and using the analogue in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-homotopy of the Leray spectral sequence, we compute the <em>η</em>-inverted MW-motivic cohomology of general Stiefel varieties, obtaining in particular the computation of the <em>η</em>-inverted MW-motivic cohomology of the general linear groups <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the special linear groups <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for any <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>.</div><div>Finally, we determine the multiplicative structures of these total cohomology groups.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shuffle algebras, lattice paths and Macdonald functions","authors":"Alexandr Garbali, Ajeeth Gunna","doi":"10.1016/j.aim.2024.109974","DOIUrl":"10.1016/j.aim.2024.109974","url":null,"abstract":"<div><div>We consider partition functions on the <span><math><mi>N</mi><mo>×</mo><mi>N</mi></math></span> square lattice with the local Boltzmann weights given by the <em>R</em>-matrix of the <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><msub><mrow><mover><mrow><mi>s</mi><mi>l</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn><mo>|</mo><mi>m</mi></mrow></msub><mo>)</mo></math></span> quantum algebra. We identify boundary states such that the square lattice can be viewed on a conic surface. The partition function <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> on this lattice computes the weighted sum over all possible closed coloured lattice paths with <span><math><mi>n</mi><mo>+</mo><mi>m</mi></math></span> different colours: <em>n</em> “bosonic” colours and <em>m</em> “fermionic” colours. Each bosonic (fermionic) path of colour <em>i</em> contributes a factor of <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> (<span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>) to the weight of the configuration. We show the following:<ul><li><span>i)</span><span><div><span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> is a symmetric function in the spectral parameters <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>…</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> and generates basis elements of the commutative trigonometric Feigin–Odesskii shuffle algebra. The generating function of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits a shuffle-exponential formula analogous to the Macdonald Cauchy kernel.</div></span></li><li><span>ii)</span><span><div><span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> is a symmetric function in two alphabets <span><math><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>…</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>…</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span>. When <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>…</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> are set to be equal to the box content of a skew Young diagram <span><math><mi>μ</mi><mo>/</mo><mi>ν</mi></math></span> with <em>N</em> boxes the partition function <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> reproduces the skew Macdonald function <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>μ</mi><mo>/</mo><mi>ν</mi></mrow></msub><mrow><mo>[</mo><mi>w</mi><mo>−</mo><mi>z</mi><mo>]</mo></mrow></math></span>.</div></span></li></","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability of Llarull's theorem in all dimensions","authors":"Sven Hirsch , Yiyue Zhang","doi":"10.1016/j.aim.2024.109980","DOIUrl":"10.1016/j.aim.2024.109980","url":null,"abstract":"<div><div>Llarull's theorem characterizes the round sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> among all spin manifolds whose scalar curvature is bounded from below by <span><math><mi>n</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. In this paper we show that if the scalar curvature is bounded from below by <span><math><mi>n</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>−</mo><mi>ε</mi></math></span>, the underlying manifold is <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>-close to a finite number of spheres outside a small bad set. This completely solves Gromov's spherical stability problem and is the first instance of a scalar curvature stability result that both holds in all dimensions and is stated without any additional geometrical or topological assumptions.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generalized cohomology theories for algebraic stacks","authors":"Adeel A. Khan , Charanya Ravi","doi":"10.1016/j.aim.2024.109975","DOIUrl":"10.1016/j.aim.2024.109975","url":null,"abstract":"<div><div>We extend the stable motivic homotopy category of Voevodsky to the class of scalloped algebraic stacks, and show that it admits the formalism of Grothendieck's six operations. Objects in this category represent generalized cohomology theories for stacks like algebraic K-theory, as well as new examples like genuine motivic cohomology and algebraic cobordism. These cohomology theories admit Gysin maps and satisfy homotopy invariance, localization, and Mayer–Vietoris. For example, we deduce that homotopy K-theory satisfies cdh descent on scalloped stacks. We also prove a fixed point localization formula for torus actions.</div><div>Finally, the construction is contrasted with a “lisse-extended” stable motivic homotopy category, defined for arbitrary stacks: we show for example that lisse-extended motivic cohomology of quotient stacks is computed by the equivariant higher Chow groups of Edidin–Graham, and we also get a good new theory of Borel-equivariant algebraic cobordism. Moreover, the lisse-extended motivic homotopy type is shown to recover all previous constructions of motives of stacks.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Duality for weak multiplier Hopf algebras with sufficiently many integrals","authors":"Alfons Van Daele , Shuanhong Wang","doi":"10.1016/j.aim.2024.109971","DOIUrl":"10.1016/j.aim.2024.109971","url":null,"abstract":"<div><div>We study duality of regular weak multiplier Hopf algebras with sufficiently many integrals. This generalizes the well-known duality of algebraic quantum groups. We need to modify the definition of an integral in this case. It is no longer true that an integral is automatically faithful and unique. Therefore we have to work with a faithful set of integrals. We apply the theory to three cases and give some examples. First we have the two weak multiplier Hopf algebras associated with an infinite groupoid (a small category). Related we answer a question posed by Nicolás Andruskiewitsch about double groupoids. Finally, we also discuss the weak multiplier Hopf algebras associated to a separability idempotent.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Koebe conjecture and the Weyl problem for convex surfaces in hyperbolic 3-space","authors":"Feng Luo , Tianqi Wu","doi":"10.1016/j.aim.2024.109969","DOIUrl":"10.1016/j.aim.2024.109969","url":null,"abstract":"<div><div>We prove that the Koebe circle domain conjecture is equivalent to the Weyl type problem that every complete hyperbolic surface of genus zero is isometric to the boundary of the hyperbolic convex hull of the complement of a circle domain in the hyperbolic 3-space. Applications of the result to discrete conformal geometry will be discussed. The main tool we use is Schramm's transboundary extremal lengths.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}