g2 -模空间的几何与周期

IF 1.5 1区 数学 Q1 MATHEMATICS
Thibault Langlais
{"title":"g2 -模空间的几何与周期","authors":"Thibault Langlais","doi":"10.1016/j.aim.2025.110435","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the geometry of the moduli space <span><math><mi>M</mi></math></span> of torsion-free <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures on a compact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-manifold <em>M</em>, equipped with the volume-normalised <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-metric <span><math><mi>G</mi></math></span>. When <span><math><msup><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, this metric is known to be of Hessian type and to admit a global potential. Here we give a new description of the geometry of <span><math><mi>M</mi></math></span>, based on the observation that there is a natural way to immerse the moduli space into a homogeneous space <span><math><mi>D</mi></math></span> diffeomorphic to <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><mo>{</mo><mo>±</mo><mn>1</mn><mo>}</mo><mo>×</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>, where <span><math><mi>n</mi><mo>=</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. We point out that the formal properties of this immersion <span><math><mi>Φ</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>D</mi></math></span> are very similar to those of the period map defined on the moduli spaces of Calabi–Yau threefolds. With a view to understand the curvatures of <span><math><mi>G</mi></math></span>, we also derive a new formula for the fourth derivative of the potential and relate it to the second fundamental form of <span><math><mi>Φ</mi><mo>(</mo><mi>M</mi><mo>)</mo><mo>⊂</mo><mi>D</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110435"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry and periods of G2-moduli spaces\",\"authors\":\"Thibault Langlais\",\"doi\":\"10.1016/j.aim.2025.110435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the geometry of the moduli space <span><math><mi>M</mi></math></span> of torsion-free <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures on a compact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-manifold <em>M</em>, equipped with the volume-normalised <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-metric <span><math><mi>G</mi></math></span>. When <span><math><msup><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, this metric is known to be of Hessian type and to admit a global potential. Here we give a new description of the geometry of <span><math><mi>M</mi></math></span>, based on the observation that there is a natural way to immerse the moduli space into a homogeneous space <span><math><mi>D</mi></math></span> diffeomorphic to <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><mo>{</mo><mo>±</mo><mn>1</mn><mo>}</mo><mo>×</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>, where <span><math><mi>n</mi><mo>=</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. We point out that the formal properties of this immersion <span><math><mi>Φ</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>D</mi></math></span> are very similar to those of the period map defined on the moduli spaces of Calabi–Yau threefolds. With a view to understand the curvatures of <span><math><mi>G</mi></math></span>, we also derive a new formula for the fourth derivative of the potential and relate it to the second fundamental form of <span><math><mi>Φ</mi><mo>(</mo><mi>M</mi><mo>)</mo><mo>⊂</mo><mi>D</mi></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"479 \",\"pages\":\"Article 110435\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003330\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003330","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究具有体积归一化l2度规g的紧致g2流形M上无扭力g2结构的模空间M的几何性质,当b1(M)=0时,该度规已知为Hessian型并具有全局势。本文基于将模空间浸入到GL(n+1)/({±1}×O(n))微分同构的齐次空间D(其中n=b3(M)−1)中有一种自然的方法,给出了M的几何的一种新的描述。我们指出这种浸入式Φ:M→D的形式性质与Calabi-Yau三倍模空间上定义的周期映射的形式性质非常相似。为了理解G的曲率,我们也推导出势的四阶导数的新公式,并将其与Φ(M)∧D的第二种基本形式联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry and periods of G2-moduli spaces
This paper is concerned with the geometry of the moduli space M of torsion-free G2-structures on a compact G2-manifold M, equipped with the volume-normalised L2-metric G. When b1(M)=0, this metric is known to be of Hessian type and to admit a global potential. Here we give a new description of the geometry of M, based on the observation that there is a natural way to immerse the moduli space into a homogeneous space D diffeomorphic to GL(n+1)/({±1}×O(n)), where n=b3(M)1. We point out that the formal properties of this immersion Φ:MD are very similar to those of the period map defined on the moduli spaces of Calabi–Yau threefolds. With a view to understand the curvatures of G, we also derive a new formula for the fourth derivative of the potential and relate it to the second fundamental form of Φ(M)D.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信