{"title":"g2 -模空间的几何与周期","authors":"Thibault Langlais","doi":"10.1016/j.aim.2025.110435","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the geometry of the moduli space <span><math><mi>M</mi></math></span> of torsion-free <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures on a compact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-manifold <em>M</em>, equipped with the volume-normalised <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-metric <span><math><mi>G</mi></math></span>. When <span><math><msup><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, this metric is known to be of Hessian type and to admit a global potential. Here we give a new description of the geometry of <span><math><mi>M</mi></math></span>, based on the observation that there is a natural way to immerse the moduli space into a homogeneous space <span><math><mi>D</mi></math></span> diffeomorphic to <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><mo>{</mo><mo>±</mo><mn>1</mn><mo>}</mo><mo>×</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>, where <span><math><mi>n</mi><mo>=</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. We point out that the formal properties of this immersion <span><math><mi>Φ</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>D</mi></math></span> are very similar to those of the period map defined on the moduli spaces of Calabi–Yau threefolds. With a view to understand the curvatures of <span><math><mi>G</mi></math></span>, we also derive a new formula for the fourth derivative of the potential and relate it to the second fundamental form of <span><math><mi>Φ</mi><mo>(</mo><mi>M</mi><mo>)</mo><mo>⊂</mo><mi>D</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110435"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry and periods of G2-moduli spaces\",\"authors\":\"Thibault Langlais\",\"doi\":\"10.1016/j.aim.2025.110435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the geometry of the moduli space <span><math><mi>M</mi></math></span> of torsion-free <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures on a compact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-manifold <em>M</em>, equipped with the volume-normalised <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-metric <span><math><mi>G</mi></math></span>. When <span><math><msup><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, this metric is known to be of Hessian type and to admit a global potential. Here we give a new description of the geometry of <span><math><mi>M</mi></math></span>, based on the observation that there is a natural way to immerse the moduli space into a homogeneous space <span><math><mi>D</mi></math></span> diffeomorphic to <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><mo>{</mo><mo>±</mo><mn>1</mn><mo>}</mo><mo>×</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>, where <span><math><mi>n</mi><mo>=</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. We point out that the formal properties of this immersion <span><math><mi>Φ</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>D</mi></math></span> are very similar to those of the period map defined on the moduli spaces of Calabi–Yau threefolds. With a view to understand the curvatures of <span><math><mi>G</mi></math></span>, we also derive a new formula for the fourth derivative of the potential and relate it to the second fundamental form of <span><math><mi>Φ</mi><mo>(</mo><mi>M</mi><mo>)</mo><mo>⊂</mo><mi>D</mi></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"479 \",\"pages\":\"Article 110435\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003330\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003330","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
This paper is concerned with the geometry of the moduli space of torsion-free -structures on a compact -manifold M, equipped with the volume-normalised -metric . When , this metric is known to be of Hessian type and to admit a global potential. Here we give a new description of the geometry of , based on the observation that there is a natural way to immerse the moduli space into a homogeneous space diffeomorphic to , where . We point out that the formal properties of this immersion are very similar to those of the period map defined on the moduli spaces of Calabi–Yau threefolds. With a view to understand the curvatures of , we also derive a new formula for the fourth derivative of the potential and relate it to the second fundamental form of .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.