{"title":"Sharp quantitative stability of Struwe's decomposition of the Poincaré-Sobolev inequalities on the hyperbolic space: Part I","authors":"Mousomi Bhakta , Debdip Ganguly , Debabrata Karmakar , Saikat Mazumdar","doi":"10.1016/j.aim.2025.110447","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we study the quantitative stability of the Poincaré-Sobolev equation on the hyperbolic space<span><span><span>(<span><math><mi>P</mi></math></span>)</span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mi>u</mi><mspace></mspace><mo>−</mo><mspace></mspace><mi>λ</mi><mi>u</mi><mspace></mspace><mo>=</mo><mspace></mspace><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo>≤</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> and <span><math><mi>λ</mi><mo>≤</mo><mfrac><mrow><msup><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. If we consider the upper half space model for the hyperbolic space, then the solutions to <span><span>(<span><math><mi>P</mi></math></span>)</span></span> have certain equivalence with the <em>cylindrically symmetric solutions</em> to the <em>Hardy-Sobolev-Mazy'a</em> equation on the Euclidean space.</div><div>A classical result owing to Mancini and Sandeep <span><span>[43]</span></span> asserts that all positive solutions to <span><span>(<span><math><mi>P</mi></math></span>)</span></span> are unique up to hyperbolic isometries, which henceforth will be called the <em>hyperbolic bubbles</em>. In the spirit of Struwe, Bhakta-Sandeep <span><span>[6]</span></span> proved the following non-quantitative stability result: if <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>≥</mo><mn>0</mn></math></span>, and <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><mi>λ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><msubsup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>→</mo><mn>0</mn></math></span>, then <span><math><mi>δ</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>:</mo><mo>=</mo><mtext>dist</mtext><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>)</mo><mo>→</mo><mn>0</mn></math></span>, where <span><math><mtext>dist</mtext><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>)</mo></math></span> denotes the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-distance of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> from the manifold of sums of superpositions of <em>hyperbolic bubbles</em> and (localized) Aubin-Talenti bubbles.</div><div>In this article, we study the quantitative stability of Struwe decomposition. We prove under certain bounds on <span><math><msub><mrow><mo>‖</mo><mi>∇</mi><mi>u</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></msub></math></span> the inequality<span><span><span><math><mrow><mi>δ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>≲</mo><msub><mrow><mo>‖</mo><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>,</mo></mrow></math></span></span></span> holds whenever <span><math><mi>p</mi><mo>></mo><mn>2</mn></math></span> and hence forcing the dimensional restriction <span><math><mn>3</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>5</mn></math></span>. Moreover, it fails for any <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> and hence the dependence on the exponent <em>p</em> is sharp. In the critical case, <em>our dimensional constraint</em> coincides with the seminal result of Figalli and Glaudo <span><span>[29]</span></span>, which manifests as the dependence on dimension via the critical exponent <span><math><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>></mo><mn>2</mn></math></span> if and only if <span><math><mn>3</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>5</mn></math></span>.</div><div>We derive several new and novel estimates on the interaction of hyperbolic bubbles and their derivatives. The interaction estimates are sharp and of paramount importance, among several other geometric arguments, to adopt the approach of Figalli and Glaudo in this context. The sharpness of the stability estimates requires improved eigenfunction integrability estimates, which we believe are new in this context.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110447"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003457","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we study the quantitative stability of the Poincaré-Sobolev equation on the hyperbolic space() where , and . If we consider the upper half space model for the hyperbolic space, then the solutions to () have certain equivalence with the cylindrically symmetric solutions to the Hardy-Sobolev-Mazy'a equation on the Euclidean space.
A classical result owing to Mancini and Sandeep [43] asserts that all positive solutions to () are unique up to hyperbolic isometries, which henceforth will be called the hyperbolic bubbles. In the spirit of Struwe, Bhakta-Sandeep [6] proved the following non-quantitative stability result: if , and , then , where denotes the -distance of from the manifold of sums of superpositions of hyperbolic bubbles and (localized) Aubin-Talenti bubbles.
In this article, we study the quantitative stability of Struwe decomposition. We prove under certain bounds on the inequality holds whenever and hence forcing the dimensional restriction . Moreover, it fails for any and and hence the dependence on the exponent p is sharp. In the critical case, our dimensional constraint coincides with the seminal result of Figalli and Glaudo [29], which manifests as the dependence on dimension via the critical exponent if and only if .
We derive several new and novel estimates on the interaction of hyperbolic bubbles and their derivatives. The interaction estimates are sharp and of paramount importance, among several other geometric arguments, to adopt the approach of Figalli and Glaudo in this context. The sharpness of the stability estimates requires improved eigenfunction integrability estimates, which we believe are new in this context.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.