Sharp quantitative stability of Struwe's decomposition of the Poincaré-Sobolev inequalities on the hyperbolic space: Part I

IF 1.5 1区 数学 Q1 MATHEMATICS
Mousomi Bhakta , Debdip Ganguly , Debabrata Karmakar , Saikat Mazumdar
{"title":"Sharp quantitative stability of Struwe's decomposition of the Poincaré-Sobolev inequalities on the hyperbolic space: Part I","authors":"Mousomi Bhakta ,&nbsp;Debdip Ganguly ,&nbsp;Debabrata Karmakar ,&nbsp;Saikat Mazumdar","doi":"10.1016/j.aim.2025.110447","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we study the quantitative stability of the Poincaré-Sobolev equation on the hyperbolic space<span><span><span>(<span><math><mi>P</mi></math></span>)</span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mi>u</mi><mspace></mspace><mo>−</mo><mspace></mspace><mi>λ</mi><mi>u</mi><mspace></mspace><mo>=</mo><mspace></mspace><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> and <span><math><mi>λ</mi><mo>≤</mo><mfrac><mrow><msup><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. If we consider the upper half space model for the hyperbolic space, then the solutions to <span><span>(<span><math><mi>P</mi></math></span>)</span></span> have certain equivalence with the <em>cylindrically symmetric solutions</em> to the <em>Hardy-Sobolev-Mazy'a</em> equation on the Euclidean space.</div><div>A classical result owing to Mancini and Sandeep <span><span>[43]</span></span> asserts that all positive solutions to <span><span>(<span><math><mi>P</mi></math></span>)</span></span> are unique up to hyperbolic isometries, which henceforth will be called the <em>hyperbolic bubbles</em>. In the spirit of Struwe, Bhakta-Sandeep <span><span>[6]</span></span> proved the following non-quantitative stability result: if <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>≥</mo><mn>0</mn></math></span>, and <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><mi>λ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><msubsup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>→</mo><mn>0</mn></math></span>, then <span><math><mi>δ</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>:</mo><mo>=</mo><mtext>dist</mtext><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>)</mo><mo>→</mo><mn>0</mn></math></span>, where <span><math><mtext>dist</mtext><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>)</mo></math></span> denotes the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-distance of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> from the manifold of sums of superpositions of <em>hyperbolic bubbles</em> and (localized) Aubin-Talenti bubbles.</div><div>In this article, we study the quantitative stability of Struwe decomposition. We prove under certain bounds on <span><math><msub><mrow><mo>‖</mo><mi>∇</mi><mi>u</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></msub></math></span> the inequality<span><span><span><math><mrow><mi>δ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>≲</mo><msub><mrow><mo>‖</mo><msub><mrow><mi>Δ</mi></mrow><mrow><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>,</mo></mrow></math></span></span></span> holds whenever <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span> and hence forcing the dimensional restriction <span><math><mn>3</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>5</mn></math></span>. Moreover, it fails for any <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> and hence the dependence on the exponent <em>p</em> is sharp. In the critical case, <em>our dimensional constraint</em> coincides with the seminal result of Figalli and Glaudo <span><span>[29]</span></span>, which manifests as the dependence on dimension via the critical exponent <span><math><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>&gt;</mo><mn>2</mn></math></span> if and only if <span><math><mn>3</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>5</mn></math></span>.</div><div>We derive several new and novel estimates on the interaction of hyperbolic bubbles and their derivatives. The interaction estimates are sharp and of paramount importance, among several other geometric arguments, to adopt the approach of Figalli and Glaudo in this context. The sharpness of the stability estimates requires improved eigenfunction integrability estimates, which we believe are new in this context.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110447"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003457","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the quantitative stability of the Poincaré-Sobolev equation on the hyperbolic space(P)ΔBnuλu=|u|p1u,uH1(Bn), where n3, 1<pn+2n2 and λ(n1)24. If we consider the upper half space model for the hyperbolic space, then the solutions to (P) have certain equivalence with the cylindrically symmetric solutions to the Hardy-Sobolev-Mazy'a equation on the Euclidean space.
A classical result owing to Mancini and Sandeep [43] asserts that all positive solutions to (P) are unique up to hyperbolic isometries, which henceforth will be called the hyperbolic bubbles. In the spirit of Struwe, Bhakta-Sandeep [6] proved the following non-quantitative stability result: if um0, and ΔBnum+λum+umpH10, then δ(um):=dist(um,Mλ)0, where dist(um,Mλ) denotes the H1-distance of um from the manifold of sums of superpositions of hyperbolic bubbles and (localized) Aubin-Talenti bubbles.
In this article, we study the quantitative stability of Struwe decomposition. We prove under certain bounds on uL2(Bn) the inequalityδ(u)ΔBnu+λu+upH1, holds whenever p>2 and hence forcing the dimensional restriction 3n5. Moreover, it fails for any n3 and p(1,2] and hence the dependence on the exponent p is sharp. In the critical case, our dimensional constraint coincides with the seminal result of Figalli and Glaudo [29], which manifests as the dependence on dimension via the critical exponent 2nn2>2 if and only if 3n5.
We derive several new and novel estimates on the interaction of hyperbolic bubbles and their derivatives. The interaction estimates are sharp and of paramount importance, among several other geometric arguments, to adopt the approach of Figalli and Glaudo in this context. The sharpness of the stability estimates requires improved eigenfunction integrability estimates, which we believe are new in this context.
双曲空间上poincar - sobolev不等式的Struwe分解的急剧定量稳定性:第1部分
本文研究了双曲空间(P)−ΔBnu−λu=|u| P−1u,u∈H1(Bn)上,当n≥3,1 <; P≤n+2n−2且λ≤(n−1)24时,poincar - sobolev方程的定量稳定性。如果我们考虑双曲空间的上半空间模型,则(P)的解与欧几里德空间上Hardy-Sobolev-Mazy'a方程的圆柱对称解具有一定的等价性。由于Mancini和Sandeep[43]的经典结果断言(P)的所有正解在双曲等距范围内都是唯一的,因此将其称为双曲气泡。在Struwe的精神下,Bhakta-Sandeep[6]证明了以下非定量稳定性结果:如果um≥0,且‖ΔBnum+λum+ump‖H−1→0,则δ(um):=dist(um,Mλ)→0,其中dist(um,Mλ)表示um到双曲气泡和(定域)Aubin-Talenti气泡叠加和流形的h1距离。本文研究了Struwe分解的定量稳定性。我们证明了在‖∇u‖L2(Bn)的一定界下不等式δ(u)≤‖ΔBnu+λu+up‖H−1,无论何时p>;2都成立,从而强制维度限制3≤n≤5。而且,对于任何n≥3且p∈(1,2),它都不成立,因此对指数p的依赖性很大。在临界情况下,我们的维度约束与Figalli和Glaudo[29]的开创性结果一致,表现为当且仅当3≤n≤5时,通过临界指数2nn−2>;2对维度的依赖。我们对双曲气泡及其衍生物的相互作用给出了几个新的估计。相互作用的估计是尖锐的,在其他几个几何论点中,在这种情况下采用Figalli和Glaudo的方法是至关重要的。稳定性估计的清晰度需要改进特征函数可积性估计,我们认为这在这方面是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信