Poissonian actions of Polish groups

IF 1.5 1区 数学 Q1 MATHEMATICS
Nachi Avraham-Re'em , Emmanuel Roy
{"title":"Poissonian actions of Polish groups","authors":"Nachi Avraham-Re'em ,&nbsp;Emmanuel Roy","doi":"10.1016/j.aim.2025.110437","DOIUrl":null,"url":null,"abstract":"<div><div>We define and study Poissonian actions of Polish groups as a framework to Poisson suspensions, characterize them spectrally, and provide a complete characterization of their ergodicity. We further construct <em>spatial</em> Poissonian actions, answering partially a question of Glasner, Tsirelson &amp; Weiss about Lévy groups. We also construct for every diffeomorphism group a weakly mixing free spatial probability-preserving action. This constitutes a new class of Polish groups admitting non-essentially countable orbit equivalence relations, obtaining progress on a problem of Kechris.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110437"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003354","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define and study Poissonian actions of Polish groups as a framework to Poisson suspensions, characterize them spectrally, and provide a complete characterization of their ergodicity. We further construct spatial Poissonian actions, answering partially a question of Glasner, Tsirelson & Weiss about Lévy groups. We also construct for every diffeomorphism group a weakly mixing free spatial probability-preserving action. This constitutes a new class of Polish groups admitting non-essentially countable orbit equivalence relations, obtaining progress on a problem of Kechris.
波兰团体的泊松行动
我们定义和研究波兰群的泊松作用作为泊松悬液的框架,对它们进行光谱表征,并提供它们遍历性的完整表征。我们进一步建构空间泊松作用,部分回答了Glasner, Tsirelson &;关于lsamvy群体。我们还为每一个微分同构群构造了一个弱混合自由空间保概率作用。这构成了一个承认非本质可数轨道等价关系的波兰群的新类别,在Kechris问题上取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信