Morse properties in convex projective geometry

IF 1.5 1区 数学 Q1 MATHEMATICS
Mitul Islam , Theodore Weisman
{"title":"Morse properties in convex projective geometry","authors":"Mitul Islam ,&nbsp;Theodore Weisman","doi":"10.1016/j.aim.2025.110430","DOIUrl":null,"url":null,"abstract":"<div><div>We study properties of “hyperbolic directions” in groups acting cocompactly on properly convex domains in real projective space, from three different perspectives simultaneously: the (coarse) metric geometry of the Hilbert metric, the projective geometry of the boundary of the domain, and the singular value gaps of projective automorphisms. We describe the relationship between different definitions of “Morse” and “regular” quasi-geodesics arising in these three different contexts. This generalizes several results of Benoist and Guichard to the non-Gromov hyperbolic setting.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110430"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003287","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study properties of “hyperbolic directions” in groups acting cocompactly on properly convex domains in real projective space, from three different perspectives simultaneously: the (coarse) metric geometry of the Hilbert metric, the projective geometry of the boundary of the domain, and the singular value gaps of projective automorphisms. We describe the relationship between different definitions of “Morse” and “regular” quasi-geodesics arising in these three different contexts. This generalizes several results of Benoist and Guichard to the non-Gromov hyperbolic setting.
凸射影几何中的莫尔斯性质
本文研究了实射影空间中紧作用于适当凸域上的群的“双曲方向”的性质,同时从三个不同的角度:希尔伯特度量的(粗)度量几何、域边界的射影几何和射影自同构的奇异值间隙。我们描述了在这三种不同情况下产生的“莫尔斯”和“规则”准测地线的不同定义之间的关系。这将Benoist和Guichard的几个结果推广到非gromov双曲环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信