{"title":"Topological dynamical systems induced by polynomials and combinatorial consequences","authors":"Wen Huang, Song Shao, Xiangdong Ye","doi":"10.1016/j.aim.2025.110440","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> be an integral polynomial with <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></math></span>. It is shown that if <em>S</em> is piecewise syndetic in <span><math><mi>Z</mi></math></span>, then<span><span><span><math><mo>{</mo><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>m</mi><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>∈</mo><mi>S</mi><mo>}</mo></math></span></span></span> is piecewise syndetic in <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, which extends the result by Glasner and Furstenberg for linear polynomials. Our result is obtained by showing the density of minimal points of a dynamical system of a <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> action associated with the piecewise syndetic set <em>S</em> and the polynomials <span><math><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></math></span>.</div><div>Moreover, it is proved that if <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> is minimal, then for each non-empty open subset <em>U</em> of <em>X</em>, there is <span><math><mi>x</mi><mo>∈</mo><mi>U</mi></math></span> with <span><math><mo>{</mo><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mi>x</mi><mo>∈</mo><mi>U</mi><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mi>x</mi><mo>∈</mo><mi>U</mi><mo>}</mo></math></span> piecewise syndetic.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110440"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082500338X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let and be an integral polynomial with , . It is shown that if S is piecewise syndetic in , then is piecewise syndetic in , which extends the result by Glasner and Furstenberg for linear polynomials. Our result is obtained by showing the density of minimal points of a dynamical system of a action associated with the piecewise syndetic set S and the polynomials .
Moreover, it is proved that if is minimal, then for each non-empty open subset U of X, there is with piecewise syndetic.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.