重新审视虚拟定位

IF 1.5 1区 数学 Q1 MATHEMATICS
Dhyan Aranha , Adeel A. Khan , Alexei Latyntsev , Hyeonjun Park , Charanya Ravi
{"title":"重新审视虚拟定位","authors":"Dhyan Aranha ,&nbsp;Adeel A. Khan ,&nbsp;Alexei Latyntsev ,&nbsp;Hyeonjun Park ,&nbsp;Charanya Ravi","doi":"10.1016/j.aim.2025.110434","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>T</em> be a split torus acting on an algebraic scheme <em>X</em> with fixed locus <em>Z</em>. Edidin and Graham showed that on localized <em>T</em>-equivariant Chow groups, (a) push-forward <span><math><msub><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span> along <span><math><mi>i</mi><mo>:</mo><mi>Z</mi><mo>→</mo><mi>X</mi></math></span> is an isomorphism, and (b) when <em>X</em> is smooth the inverse <span><math><msup><mrow><mo>(</mo><msub><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> can be described via Gysin pullback <span><math><msup><mrow><mi>i</mi></mrow><mrow><mo>!</mo></mrow></msup></math></span> and cap product with <span><math><mi>e</mi><msup><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, the inverse of the Euler class of the normal bundle <em>N</em>. In this paper we show that (b) still holds when <em>X</em> is a quasi-smooth derived scheme (or Deligne–Mumford stack), using virtual versions of the operations <span><math><msup><mrow><mi>i</mi></mrow><mrow><mo>!</mo></mrow></msup></math></span> and <span><math><mo>(</mo><mo>−</mo><mo>)</mo><mo>∩</mo><mi>e</mi><msup><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. As a corollary we prove the virtual localization formula <span><math><msup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mrow><mi>vir</mi></mrow></msup><mo>=</mo><msub><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><msup><mrow><mo>[</mo><mi>Z</mi><mo>]</mo></mrow><mrow><mi>vir</mi></mrow></msup><mo>∩</mo><mi>e</mi><msup><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>vir</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> of Graber–Pandharipande without global resolution hypotheses and over arbitrary base fields. We include an appendix on fixed loci of group actions on (derived) stacks which should be of independent interest.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110434"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual localization revisited\",\"authors\":\"Dhyan Aranha ,&nbsp;Adeel A. Khan ,&nbsp;Alexei Latyntsev ,&nbsp;Hyeonjun Park ,&nbsp;Charanya Ravi\",\"doi\":\"10.1016/j.aim.2025.110434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>T</em> be a split torus acting on an algebraic scheme <em>X</em> with fixed locus <em>Z</em>. Edidin and Graham showed that on localized <em>T</em>-equivariant Chow groups, (a) push-forward <span><math><msub><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span> along <span><math><mi>i</mi><mo>:</mo><mi>Z</mi><mo>→</mo><mi>X</mi></math></span> is an isomorphism, and (b) when <em>X</em> is smooth the inverse <span><math><msup><mrow><mo>(</mo><msub><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> can be described via Gysin pullback <span><math><msup><mrow><mi>i</mi></mrow><mrow><mo>!</mo></mrow></msup></math></span> and cap product with <span><math><mi>e</mi><msup><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, the inverse of the Euler class of the normal bundle <em>N</em>. In this paper we show that (b) still holds when <em>X</em> is a quasi-smooth derived scheme (or Deligne–Mumford stack), using virtual versions of the operations <span><math><msup><mrow><mi>i</mi></mrow><mrow><mo>!</mo></mrow></msup></math></span> and <span><math><mo>(</mo><mo>−</mo><mo>)</mo><mo>∩</mo><mi>e</mi><msup><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. As a corollary we prove the virtual localization formula <span><math><msup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mrow><mi>vir</mi></mrow></msup><mo>=</mo><msub><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><msup><mrow><mo>[</mo><mi>Z</mi><mo>]</mo></mrow><mrow><mi>vir</mi></mrow></msup><mo>∩</mo><mi>e</mi><msup><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>vir</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> of Graber–Pandharipande without global resolution hypotheses and over arbitrary base fields. We include an appendix on fixed loci of group actions on (derived) stacks which should be of independent interest.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"479 \",\"pages\":\"Article 110434\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003329\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003329","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设T是作用于具有固定轨迹Z的代数方案X上的分裂环面。Edidin和Graham证明了在定域T等变Chow群上,(a)沿i:Z→X向前推i是同构的,(b)当X光滑时逆(i)−1可以通过Gysin回拉i来描述!在本文中,我们证明了当X是拟光滑导出格式(或delign - mumford堆栈)时(b)仍然成立,使用i!和(−)∩e (N)−1。作为一个推论,我们证明了在任意基域上无全局分辨率假设的Graber-Pandharipande的虚定位公式[X]vir=i ([Z]vir∩e(Nvir)−1)。我们包括一个附录,关于(派生)堆栈上的组动作的固定位点,这应该是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual localization revisited
Let T be a split torus acting on an algebraic scheme X with fixed locus Z. Edidin and Graham showed that on localized T-equivariant Chow groups, (a) push-forward i along i:ZX is an isomorphism, and (b) when X is smooth the inverse (i)1 can be described via Gysin pullback i! and cap product with e(N)1, the inverse of the Euler class of the normal bundle N. In this paper we show that (b) still holds when X is a quasi-smooth derived scheme (or Deligne–Mumford stack), using virtual versions of the operations i! and ()e(N)1. As a corollary we prove the virtual localization formula [X]vir=i([Z]vire(Nvir)1) of Graber–Pandharipande without global resolution hypotheses and over arbitrary base fields. We include an appendix on fixed loci of group actions on (derived) stacks which should be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信