Dhyan Aranha , Adeel A. Khan , Alexei Latyntsev , Hyeonjun Park , Charanya Ravi
{"title":"重新审视虚拟定位","authors":"Dhyan Aranha , Adeel A. Khan , Alexei Latyntsev , Hyeonjun Park , Charanya Ravi","doi":"10.1016/j.aim.2025.110434","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>T</em> be a split torus acting on an algebraic scheme <em>X</em> with fixed locus <em>Z</em>. Edidin and Graham showed that on localized <em>T</em>-equivariant Chow groups, (a) push-forward <span><math><msub><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span> along <span><math><mi>i</mi><mo>:</mo><mi>Z</mi><mo>→</mo><mi>X</mi></math></span> is an isomorphism, and (b) when <em>X</em> is smooth the inverse <span><math><msup><mrow><mo>(</mo><msub><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> can be described via Gysin pullback <span><math><msup><mrow><mi>i</mi></mrow><mrow><mo>!</mo></mrow></msup></math></span> and cap product with <span><math><mi>e</mi><msup><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, the inverse of the Euler class of the normal bundle <em>N</em>. In this paper we show that (b) still holds when <em>X</em> is a quasi-smooth derived scheme (or Deligne–Mumford stack), using virtual versions of the operations <span><math><msup><mrow><mi>i</mi></mrow><mrow><mo>!</mo></mrow></msup></math></span> and <span><math><mo>(</mo><mo>−</mo><mo>)</mo><mo>∩</mo><mi>e</mi><msup><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. As a corollary we prove the virtual localization formula <span><math><msup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mrow><mi>vir</mi></mrow></msup><mo>=</mo><msub><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><msup><mrow><mo>[</mo><mi>Z</mi><mo>]</mo></mrow><mrow><mi>vir</mi></mrow></msup><mo>∩</mo><mi>e</mi><msup><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>vir</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> of Graber–Pandharipande without global resolution hypotheses and over arbitrary base fields. We include an appendix on fixed loci of group actions on (derived) stacks which should be of independent interest.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110434"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual localization revisited\",\"authors\":\"Dhyan Aranha , Adeel A. Khan , Alexei Latyntsev , Hyeonjun Park , Charanya Ravi\",\"doi\":\"10.1016/j.aim.2025.110434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>T</em> be a split torus acting on an algebraic scheme <em>X</em> with fixed locus <em>Z</em>. Edidin and Graham showed that on localized <em>T</em>-equivariant Chow groups, (a) push-forward <span><math><msub><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span> along <span><math><mi>i</mi><mo>:</mo><mi>Z</mi><mo>→</mo><mi>X</mi></math></span> is an isomorphism, and (b) when <em>X</em> is smooth the inverse <span><math><msup><mrow><mo>(</mo><msub><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> can be described via Gysin pullback <span><math><msup><mrow><mi>i</mi></mrow><mrow><mo>!</mo></mrow></msup></math></span> and cap product with <span><math><mi>e</mi><msup><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, the inverse of the Euler class of the normal bundle <em>N</em>. In this paper we show that (b) still holds when <em>X</em> is a quasi-smooth derived scheme (or Deligne–Mumford stack), using virtual versions of the operations <span><math><msup><mrow><mi>i</mi></mrow><mrow><mo>!</mo></mrow></msup></math></span> and <span><math><mo>(</mo><mo>−</mo><mo>)</mo><mo>∩</mo><mi>e</mi><msup><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. As a corollary we prove the virtual localization formula <span><math><msup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow><mrow><mi>vir</mi></mrow></msup><mo>=</mo><msub><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><msup><mrow><mo>[</mo><mi>Z</mi><mo>]</mo></mrow><mrow><mi>vir</mi></mrow></msup><mo>∩</mo><mi>e</mi><msup><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>vir</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> of Graber–Pandharipande without global resolution hypotheses and over arbitrary base fields. We include an appendix on fixed loci of group actions on (derived) stacks which should be of independent interest.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"479 \",\"pages\":\"Article 110434\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003329\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003329","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let T be a split torus acting on an algebraic scheme X with fixed locus Z. Edidin and Graham showed that on localized T-equivariant Chow groups, (a) push-forward along is an isomorphism, and (b) when X is smooth the inverse can be described via Gysin pullback and cap product with , the inverse of the Euler class of the normal bundle N. In this paper we show that (b) still holds when X is a quasi-smooth derived scheme (or Deligne–Mumford stack), using virtual versions of the operations and . As a corollary we prove the virtual localization formula of Graber–Pandharipande without global resolution hypotheses and over arbitrary base fields. We include an appendix on fixed loci of group actions on (derived) stacks which should be of independent interest.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.