Catalysis Letters最新文献

筛选
英文 中文
Achieving a Large Reactivity Activity Improvement in Adenine Modified Pd/Co-MOFs Catalyst for Quinoline Hydrogenation 腺嘌呤改性 Pd/Co-MOFs 催化剂在喹啉加氢反应中实现大幅活性提升
IF 2.3 4区 化学
Catalysis Letters Pub Date : 2024-11-22 DOI: 10.1007/s10562-024-04861-1
Lu Yang, Tao Yuan, Haoyi Xu, Tingling Li, Wei Xiong, Derong Liu
{"title":"Achieving a Large Reactivity Activity Improvement in Adenine Modified Pd/Co-MOFs Catalyst for Quinoline Hydrogenation","authors":"Lu Yang,&nbsp;Tao Yuan,&nbsp;Haoyi Xu,&nbsp;Tingling Li,&nbsp;Wei Xiong,&nbsp;Derong Liu","doi":"10.1007/s10562-024-04861-1","DOIUrl":"10.1007/s10562-024-04861-1","url":null,"abstract":"<div><p>The chemo-selective hydrogenation of quinoline is a critical reaction, producing high-value chemical intermediates such as pharmaceuticals, pesticides, and dyes. Traditional heterogeneous catalysts for this reaction typically require higher and more stringent reaction conditions due to the stable π-conjugated structure of quinoline. To achieve this transformation, some innovative strategies must be developed to enhance the catalytic properties of conventional catalysts. In this work, adenine was employed as a novel structural modifier to finish Co-MOFs materials and prepare Pd/Co-MOFs<sub>(A)</sub> catalysts. The introduction of adenine efficiently enhanced structural stability and catalytic efficiency of original Pd/Co-MOFs catalyst. A remarkable increase of approximately 441% in catalytic conversion was obtained compared to the unmodified catalyst. This substantial improvement in catalytic performance could be attributed to mass transfer enhancement. The N-heterocyclic conjugated structure facilitated π–π stacking interactions and hydrogen bonding between the catalyst and quinoline, thereby accelerating mass transfer and improving catalytic efficiency. Under mild reaction conditions, the Pd/Co-MOFs<sub>(A)</sub> catalyst fully demonstrated its high catalytic performance, achieving a 99.0% quinoline conversion and a 99.9% selectivity toward 1,2,3,4-tetrahydroquinoline. Finally, the Pd/Co-MOFs<sub>(A)</sub> catalyst presented in this study could pave the way for enhancing the catalytic performance of traditional heterogeneous catalysts through alkaloid modification in quinoline hydrogenation.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled Fabrication of Mo2C/C Nanospheres via Electrospinning Technique as Electrocatalysts for the Hydrogen Evolution Reaction 通过电纺丝技术受控制备作为氢气进化反应电催化剂的 Mo2C/C 纳米球
IF 2.3 4区 化学
Catalysis Letters Pub Date : 2024-11-21 DOI: 10.1007/s10562-024-04845-1
Zexin Wu, Haoyu Zhang, Junyu Zhao, Hongshun Hao, Shuang Yan
{"title":"Controlled Fabrication of Mo2C/C Nanospheres via Electrospinning Technique as Electrocatalysts for the Hydrogen Evolution Reaction","authors":"Zexin Wu,&nbsp;Haoyu Zhang,&nbsp;Junyu Zhao,&nbsp;Hongshun Hao,&nbsp;Shuang Yan","doi":"10.1007/s10562-024-04845-1","DOIUrl":"10.1007/s10562-024-04845-1","url":null,"abstract":"<div><p>A strategy was proposed for the synthesis of Mo<sub>2</sub>C/C composite as an efficient electrocatalyst through electrospinning and calcination. PVP and PAN were utilized as electrospinning precursors for comparative analysis. Morphological characterization revealed that an electrospinning solution with the viscosity in the range of 2–5 mPa·S was conducive to the formation of spherical morphology. Under calcination at nitrogen atmosphere, as-electrospun Mo@PVP-1 and Mo@PAN-1 samples transformed into Mo<sub>2</sub>C/C with bead-like structure at 900 and 800 °C, respectively. Compared to PVP, PAN exhibited greater resistance to deformation at elevated temperature, resulting in better-dispersed spherical Mo<sub>2</sub>C/C composite. The synthesized Mo<sub>2</sub>C/C exhibited good electrocatalytic activity for hydrogen evolution reaction. The Tafel slopes of Mo<sub>2</sub>C/C prepared from Mo@PVP-1-900 and Mo@PAN-1-800 were 75.85 and 164.7 mV·dec<sup>−1</sup>, respectively. This work contributes to the understanding of synthetic process of spherical Mo<sub>2</sub>C/C composites through electrospinning, providing an effective way to improve material performance.</p><h3>Graphical Abstract</h3><p>Mo<sub>2</sub>C/C composites were synthesized by calcination with different polymer solutions (PAN and PVP) by electrostatic spraying, and their performance as catalysts was tested.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic Fatty Acid Methyl Esters (FAMEs) Synthesis Using Lepidium aucheri Seed Oil and Its Antibacterial Potential 利用乌桕籽油催化合成脂肪酸甲酯(FAMEs)及其抗菌潜力
IF 2.3 4区 化学
Catalysis Letters Pub Date : 2024-11-17 DOI: 10.1007/s10562-024-04876-8
Saeedah Musaed Almutairi, Sarah Faiez Aldossery, Khabibullaev Jamshidbek, Asqarov Ibrohimjon Rahmonovich, Azize Demirpolat, Khasanova Labor, Sabhya Pathania
{"title":"Catalytic Fatty Acid Methyl Esters (FAMEs) Synthesis Using Lepidium aucheri Seed Oil and Its Antibacterial Potential","authors":"Saeedah Musaed Almutairi,&nbsp;Sarah Faiez Aldossery,&nbsp;Khabibullaev Jamshidbek,&nbsp;Asqarov Ibrohimjon Rahmonovich,&nbsp;Azize Demirpolat,&nbsp;Khasanova Labor,&nbsp;Sabhya Pathania","doi":"10.1007/s10562-024-04876-8","DOIUrl":"10.1007/s10562-024-04876-8","url":null,"abstract":"<div><p>One of the best renewable energy sources that can replace petroleum fuel is biodiesel, which may be produced through catalytic transesterification. However, there is a risk that some of these plant-based biofuels may actually promote bacterial colonies while damaging the methyl esters that are synthesised. The present study aimed to assess the cadmium oxide (CdO) nanocatalyst in the catalytic transesterification of <i>Lepidium aucheri</i> seed oil into fatty acid methyl esters (FAMEs) as a source of Biodiesel and the potential of the seed oil against bacterial activities as possible source of bio-additive for biofuels. For biodiesel synthesis, a cadmium oxide (CdO) nanocatalyst was synthesised and characterised via SEM, FT-IR, and EDX. The biodiesel yield using the CdO catalyst was 88% when the reaction was carried out for 2 h at 75 °C with an ideal mixture of 12:1 oil to methanol molar ratio and a catalyst concentration of 2% utilising LASO. The antibacterial activity of two bacterial strains (<i>Escherichia coli</i> and <i>Bacillus subtilis</i>) was investigated via the agar well diffusion method. The maximum antibacterial activity was observed with 100 µl of LASO, which inhibited <i>Bacillus subtilis</i> and <i>Escherichia coli,</i> resulting in a 24.7 mm inhibition zone. It was also put to use in the biodiesel synthesis process, trans-esterifying nonedible LASO into methyl esters for the synthesis of Biodiesel. The synthesised biodiesel was subjected to analyses via GC‒MS, FT‒IR, and NMR. The investigation concluded that the biodiesel sector may be used the feedstock as a raw material at the commercial level.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Base-Free Conversion of 1, 2-Propanediol to Methyl Lactate in Methanol Over Cu-Modified Au/ Hydroxylapatite Catalysts 在铜改性金/羟基磷灰石催化剂上将甲醇中的 1,2-丙二醇无碱转化为乳酸甲酯
IF 2.3 4区 化学
Catalysis Letters Pub Date : 2024-11-16 DOI: 10.1007/s10562-024-04838-0
Junying Tian, Yingying Fan, Tao Wei, Qingxia Guo, Weiguo Fang, Yongle Guo
{"title":"Base-Free Conversion of 1, 2-Propanediol to Methyl Lactate in Methanol Over Cu-Modified Au/ Hydroxylapatite Catalysts","authors":"Junying Tian,&nbsp;Yingying Fan,&nbsp;Tao Wei,&nbsp;Qingxia Guo,&nbsp;Weiguo Fang,&nbsp;Yongle Guo","doi":"10.1007/s10562-024-04838-0","DOIUrl":"10.1007/s10562-024-04838-0","url":null,"abstract":"<div><p>The catalytic oxidative esterification of 1, 2-propanediol to methyl lactate in a base-free methanol system over Cu-modified Au/HAP catalysts was investigated. The catalysts demonstrated efficient activity in converting 1, 2-propanediol to methyl lactate without any base additives, achieving a conversion of 91.2% and a selectivity of 45% for methyl lactate under optimized conditions of 160 °C, 2 h, and 1.0 MPa O<sub>2</sub> over 2Au12Cu/HAP catalyst. The Au sites were identified as pivotal in catalyzing the oxidation of 1, 2-propanediol, and the basic sites of HAP was hypothesized to play a similar role with base additives to enhance the catalytic activity of Au. Furthermore, modification of Cu to Au was observed to promote the oxidation of the hydroxyacetone intermediate to methyl lactate while effectively suppressing the over-oxidation of methyl lactate, thus increased selectivity of methyl lactate.</p><h3>Graphical Abstract</h3><p>1,2-propanediol was convertedto methyl lactateefficientlyin a base-free methanol system over Au-Cu/HAP catalysts</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sunlight Driven Degradation of Drug Residues Using CuO Incorporated- Zeolite Supported- Graphitic Carbon Nitride 使用掺入氧化铜的沸石支撑氮化石墨碳在阳光下降解药物残留物
IF 2.3 4区 化学
Catalysis Letters Pub Date : 2024-11-16 DOI: 10.1007/s10562-024-04866-w
Anju John, Mekha Susan Rajan, Jesty Thomas
{"title":"Sunlight Driven Degradation of Drug Residues Using CuO Incorporated- Zeolite Supported- Graphitic Carbon Nitride","authors":"Anju John,&nbsp;Mekha Susan Rajan,&nbsp;Jesty Thomas","doi":"10.1007/s10562-024-04866-w","DOIUrl":"10.1007/s10562-024-04866-w","url":null,"abstract":"<div><p>Copper oxide nanoparticles incorporated-zeolite supported-graphitic carbon nitride (CuO/g–C<sub>3</sub>N<sub>4</sub>/Zeolite Y) catalyst was fabricated through a facile hydrothermal method, in which CuO nanoparticles were produced via precipitation. The synthesized CuO/g–C<sub>3</sub>N<sub>4</sub>/Zeolite Y was examined using characterization techniques such as FT-IR, XRD, XPS, TEM, SEM, EDX, TG, BET, DRS, and PL. BET analysis revealed that integrating zeolite and CuO has increased the surface area of graphitic carbon nitride. Increased separation efficiency and reduced recombination rates of photogenerated electrons and holes in CuO/g–C<sub>3</sub>N<sub>4</sub>/Zeolite Y were confirmed by photoluminescence studies. The CuO/g–C<sub>3</sub>N<sub>4</sub>/Zeolite Y catalyst exhibits enhanced efficiency for degrading MB and CV dyes compared to pristine g-C<sub>3</sub>N<sub>4</sub> under sunlight exposure. The active species studies demonstrated that hydroxyl radicals, superoxide anion radicals and holes involve in the photocatalytic destruction of pollutants. Additionally, the CuO/g–C<sub>3</sub>N<sub>4</sub>/Zeolite Y composite efficiently degraded the antibiotic ceftazidime. Intermediates generated during the degradation process were identified, and plausible degradation pathways for ceftazidime were proposed through LC–MS analysis. This study implies that the synthesized catalyst can be used in the wastewater cleanup process to eliminate persistent organic contaminants and pharmaceutical pollutants under sunlight irradiation.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Removal of Acid Orange 7 by Activating Persulfate Using Paper Sludge Biochar: Singlet Oxygen-Dominated Mechanism 利用造纸污泥生物炭活化过硫酸盐高效去除酸性橙 7:单线态氧主导机制
IF 2.3 4区 化学
Catalysis Letters Pub Date : 2024-11-16 DOI: 10.1007/s10562-024-04863-z
Hongtao Zhang, Shuhan Cai, Zehong Hu, Wang Qin, Fengtao Chen, Xin Zhang
{"title":"Efficient Removal of Acid Orange 7 by Activating Persulfate Using Paper Sludge Biochar: Singlet Oxygen-Dominated Mechanism","authors":"Hongtao Zhang,&nbsp;Shuhan Cai,&nbsp;Zehong Hu,&nbsp;Wang Qin,&nbsp;Fengtao Chen,&nbsp;Xin Zhang","doi":"10.1007/s10562-024-04863-z","DOIUrl":"10.1007/s10562-024-04863-z","url":null,"abstract":"<div><p>Excess sludge in the paper industry is a hazardous solid waste that requires urgent and proper disposal for environmental protection and resource utilization. In this study, a novel magnetic biochar (Fe-SDBC) synthesized from paper sludge through one-step pyrolysis was employed to activate persulfate (PDS) for the efficient removal of acid orange 7 (AO7). The results indicated that Fe-SDBC could effectively activate PDS to remove 97.8% of AO7 within 90 min, with 89.4% removed within 5 min. Fe-SDBC had unique properties with abundant adsorption and active sites, including iron-containing compounds and oxygen-containing functional groups. The addition concentrations of Fe-SDBC (0.5 g/L) and PDS (10 mM) were optimized based on response surface methodology. Furthermore, Fe-SDBC presented good stability over a wide range of pH (3 ~ 11) and reusability in cyclic experiments. Coexisting ions, such as CO<sub>3</sub><sup>2−</sup>, HCO<sub>3</sub><sup>−</sup>, and PO<sub>4</sub><sup>3−</sup>, had an inhibitory effect on AO7 removal. Both radical and non-radical pathways were proved to be involved in the Fe-SDBC/PDS system for AO7 removal, with singlet oxygen (<sup>1</sup>O<sub>2</sub>) being the dominant species. Additionally, the degradation pathways were investigated and toxicity assessment was evaluated. This work will provide a potential approach for paper sludge recycling in the wastewater treatment.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Pd-Fe2O3-Ni Electrocatalyst with Low Pd Content for Electrochemical Reduction of 4-Chlorophenol 用于 4-氯苯酚电化学还原的新型低钯含量 Pd-Fe2O3-Ni 电催化剂
IF 2.3 4区 化学
Catalysis Letters Pub Date : 2024-11-16 DOI: 10.1007/s10562-024-04850-4
Hao-Bo Gao, Tian-Zhen Zhu, Chen-Xin Xie, Jun Yang, Rui-Jia Zhang, Shao-Xun Han, Chun-Yan Ren, Li-Shan Zhou, Hou-Kai Teng, En-Shan Han, Guang-Lei Qian
{"title":"Novel Pd-Fe2O3-Ni Electrocatalyst with Low Pd Content for Electrochemical Reduction of 4-Chlorophenol","authors":"Hao-Bo Gao,&nbsp;Tian-Zhen Zhu,&nbsp;Chen-Xin Xie,&nbsp;Jun Yang,&nbsp;Rui-Jia Zhang,&nbsp;Shao-Xun Han,&nbsp;Chun-Yan Ren,&nbsp;Li-Shan Zhou,&nbsp;Hou-Kai Teng,&nbsp;En-Shan Han,&nbsp;Guang-Lei Qian","doi":"10.1007/s10562-024-04850-4","DOIUrl":"10.1007/s10562-024-04850-4","url":null,"abstract":"<div><p>Chlorophenol wastewater has a serious impact on the environment, and it is not easily degraded by traditional methods. The novel electrochemical hydrogen evolution reduction degradation has received widespread attention, among which the electrocatalytic performance of the electrode is particularly critical. In this study, Pd-Fe<sub>2</sub>O<sub>3</sub>-coated nickel foam electrode (Pd-Fe<sub>2</sub>O<sub>3</sub>-Ni) was prepared by annealing on Fe–Ni and introducing Pd into Fe<sub>2</sub>O<sub>3</sub>. Its degradation performance is better than that of the original nickel foam (Ni) and Fe<sub>2</sub>O<sub>3</sub>-Ni electrodes. The removal of 4-chlorophenol by Pd-Fe<sub>2</sub>O<sub>3</sub>-Ni was 98.2%, which was 1.4–1.52, 10–12 and 10.3–11.4 times higher than that of the unannealed Pd-Fe<sub>2</sub>O<sub>3</sub>-Ni, Ni, and Fe<sub>2</sub>O<sub>3</sub>-Ni, respectively. Meanwhile, the Pd-Fe<sub>2</sub>O<sub>3</sub>-Ni electrode had good stability, and the 4-chlorophenol removal rate was maintained at 92% after five repetitions, which proved the applicability of the Pd-Fe<sub>2</sub>O<sub>3</sub>-Ni electrode. Therefore, the prepared Pd-Fe<sub>2</sub>O<sub>3</sub>-Ni is a high-performance electrode for electrochemical reduction and degradation of wastewater.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response Surface Optimization of Solvent-Tolerant Cold-Active Lipase Production by Pseudomonas sp. VITCLP4 VITCLP4 假单胞菌生产耐溶剂冷活性脂肪酶的响应面优化
IF 2.3 4区 化学
Catalysis Letters Pub Date : 2024-11-14 DOI: 10.1007/s10562-024-04848-y
V. Iswareya Lakshimi, M. Kavitha
{"title":"Response Surface Optimization of Solvent-Tolerant Cold-Active Lipase Production by Pseudomonas sp. VITCLP4","authors":"V. Iswareya Lakshimi,&nbsp;M. Kavitha","doi":"10.1007/s10562-024-04848-y","DOIUrl":"10.1007/s10562-024-04848-y","url":null,"abstract":"<div><p>The yield of solvent-tolerant cold-active lipase from halo-tolerant <i>Pseudomonas</i> sp. VITCLP4 was improved by applying statistical methods to precisely combine medium components and other conditions. A two-level Plackett–Burman (PB) design was utilized to screen the most significant variables from eleven variables that influence lipase production. Analysis of variance revealed that Tween-80, peptone, and KH<sub>2</sub>PO<sub>4</sub> were statistically significant. Optimum levels of selected variables were ascertained by one-factor-at-a-time (OFAT) analysis. The selected three components' optimum values and interactive effects were established by response surface methodology (RSM) using a five-level-three-factor approach based on the central composite design (CCD). The optimized medium containing Tween-80, 0.6% (v/v), peptone, 0.85% (w/v), KH<sub>2</sub>PO<sub>4</sub>, 0.1% (w/v), yeast extract, 0.1% (w/v), olive oil, 0.2% (v/v) and inoculum size, 0.2% (v/v) resulted in maximum lipase production of 1356 Units mL<sup>−1</sup> min<sup>−1</sup> with 7.9-fold increase in the yield. This study provides insights into enhancing lipase production statistically with optimized resources that can be utilized in bioprocess studies and industrial applications.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CuCo/Ti-SBA-15 Catalyst for Glycerol Selective Oxidation 用于甘油选择性氧化的 CuCo/Ti-SBA-15 催化剂
IF 2.3 4区 化学
Catalysis Letters Pub Date : 2024-11-14 DOI: 10.1007/s10562-024-04839-z
Jihang Li, Guomin Xiao, Lijing Gao, Lingling Xu, Xiu Wen, Yuanzhuang Li
{"title":"CuCo/Ti-SBA-15 Catalyst for Glycerol Selective Oxidation","authors":"Jihang Li,&nbsp;Guomin Xiao,&nbsp;Lijing Gao,&nbsp;Lingling Xu,&nbsp;Xiu Wen,&nbsp;Yuanzhuang Li","doi":"10.1007/s10562-024-04839-z","DOIUrl":"10.1007/s10562-024-04839-z","url":null,"abstract":"<div><p>Selective oxidation of glycerol has been considered to be one of the ways of efficient conversion and utilization of glycerol. This paper reported the preparation of a series of supported non-noble metal catalysts on Ti modified SBA-15 supported by CuCo, a cheap and readily available non-noble metal, and evaluated the catalytic effect of the catalysts in the selective oxidation of glycerol to produce tartronic acid. The properties of Cu<sub>x</sub>Co<sub>y</sub>/Ti-SBA-15 catalysts were characterized by XRD, XPS, FT-IR, BET, SEM and TEM. The results showed that Cu and Co were uniformly distributed on the surface of Ti-SBA-15 and the original structure of SBA-15 was maintained. The catalytic activity of CuO and Co<sub>3</sub>O<sub>4</sub> can be improved through the synergistic effect of valence change. In addition, the glycerol conversion was 53.8% and tartronic acid selectivity was 54.5% under the optimal reaction conditions. After five cycles, the catalyst still maintained good reuse performance.</p><h3>Graphic Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalising Pinus roxburghii Biochar with Mg–Fe-LDH for Effective Organic Pollutant Mitigation in Wastewater 用 Mg-Fe-LDH 对罗布麻生物炭进行功能化处理,以有效缓解废水中的有机污染物
IF 2.3 4区 化学
Catalysis Letters Pub Date : 2024-11-14 DOI: 10.1007/s10562-024-04875-9
Nancy Jaswal, Nipjyoti Sarma, Purnima Justa, Amit Kumar Sharma, Pragati Kumar, Pramod Kumar
{"title":"Functionalising Pinus roxburghii Biochar with Mg–Fe-LDH for Effective Organic Pollutant Mitigation in Wastewater","authors":"Nancy Jaswal,&nbsp;Nipjyoti Sarma,&nbsp;Purnima Justa,&nbsp;Amit Kumar Sharma,&nbsp;Pragati Kumar,&nbsp;Pramod Kumar","doi":"10.1007/s10562-024-04875-9","DOIUrl":"10.1007/s10562-024-04875-9","url":null,"abstract":"<div><p>Biochar, a carbon-enriched material, has been introduced as robust sorbent for the removal of wide array of pollutants. Recently, Biochar functionalized with metals or metal hydroxide composites has gained attention as low-cost, sustainable materials. Layered double hydroxides (LDHs) and biochar interact synergistically to produce composites with significantly improved specific surface area, structural heterogenicity, surface functional groups, stability and adsorptive properties. In this study, composites constructed out on Mg–Fe LDHs supported by biochar (BC) derived from <i>Pinus roxburghii</i> (chir pine) waste are synthesised. <i>Pinus roxburghii</i> biochar (PR-BC-500) was produced at 500 ℃ under inert conditions and used to synthesize biochar incorporated LDH nanostructures (PR-LDH-500) hydrothermally. Nanocomposites were characterized by XRD, FTIR, BET, Raman, Zeta potential, UV, PL, SEM and EDS techniques. The SEM results display the ideal distribution of LDH particles on the surface of biochar, increasing surface area and occupying pores, confirming composite formation. Photocatalytic outcomes demonstrated that the BC particles integrated into the LDH structure demonstrated strong photocatalytic performance as prepared. 93.4% of Methylene Blue was degraded through photocatalytic degradation in the active participation of PR-LDH-500 nanocomposites, whereas PR-BC-500 degraded only 76.8%. The optimal conditions for methylene blue degradation using PR-LDH-500 and PR-BC-500 photocatalysts were achieved at a catalyst dosage of 50 mg, with a maximum degradation of 94% at pH 12 after 240 min of UV irradiation. According to the results, PR-LDH-500 has outstanding feasibility as a durable and inexpensive adsorbent for the purifying dye-tainted aqueous ecosystems.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信