CO2加氢制甲醇的高选择性CuZnY催化剂

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Yao Cai, Qi Wang, Dingran Wang, Tianfu Zhang, Ting Fan, Di Fu, Yanghui Lu, Gonggang Sun, Xinbao Li, Kaige Wang
{"title":"CO2加氢制甲醇的高选择性CuZnY催化剂","authors":"Yao Cai,&nbsp;Qi Wang,&nbsp;Dingran Wang,&nbsp;Tianfu Zhang,&nbsp;Ting Fan,&nbsp;Di Fu,&nbsp;Yanghui Lu,&nbsp;Gonggang Sun,&nbsp;Xinbao Li,&nbsp;Kaige Wang","doi":"10.1007/s10562-025-05048-y","DOIUrl":null,"url":null,"abstract":"<div><p>Achieving carbon neutrality through CO<sub>2</sub> hydrogenation is critical for sustainable energy and chemical industries, where methanol production remains a key target. Despite existing catalysts, challenges persist in low CO<sub>2</sub> conversion, poor methanol selectivity, and activity instability. This study introduces a novel ternary Cu/Zn/Y catalyst synthesized via co-precipitation to address these limitations. Tested under 5 MPa, 250 °C, H<sub>2</sub>/CO<sub>2</sub> = 3:1, and 12,000 h⁻¹, the catalyst achieved a CO<sub>2</sub> conversion rate of 16.6% and a methanol selectivity of 56.6%, outperforming the CuZnAl benchmark with a 14.3% higher methanol space-time yield (402.3 mg/(gcat·h)). Optimal yttrium doping enhanced methanol selectivity by 20%, attributed to improved copper dispersion. However, excess Y occupancy disrupted Cu–Zn interactions, reducing CO<sub>2</sub> conversion and stability, highlighting critical trade-offs. These insight underscore the potential of Cu/Zn/Y catalysts for carbon-neutral technologies and emphasize the need for optimized Y doping to balance selectivity and stability.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Highly Selective CuZnY Catalyst for CO2 Hydrogenation to Methanol\",\"authors\":\"Yao Cai,&nbsp;Qi Wang,&nbsp;Dingran Wang,&nbsp;Tianfu Zhang,&nbsp;Ting Fan,&nbsp;Di Fu,&nbsp;Yanghui Lu,&nbsp;Gonggang Sun,&nbsp;Xinbao Li,&nbsp;Kaige Wang\",\"doi\":\"10.1007/s10562-025-05048-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Achieving carbon neutrality through CO<sub>2</sub> hydrogenation is critical for sustainable energy and chemical industries, where methanol production remains a key target. Despite existing catalysts, challenges persist in low CO<sub>2</sub> conversion, poor methanol selectivity, and activity instability. This study introduces a novel ternary Cu/Zn/Y catalyst synthesized via co-precipitation to address these limitations. Tested under 5 MPa, 250 °C, H<sub>2</sub>/CO<sub>2</sub> = 3:1, and 12,000 h⁻¹, the catalyst achieved a CO<sub>2</sub> conversion rate of 16.6% and a methanol selectivity of 56.6%, outperforming the CuZnAl benchmark with a 14.3% higher methanol space-time yield (402.3 mg/(gcat·h)). Optimal yttrium doping enhanced methanol selectivity by 20%, attributed to improved copper dispersion. However, excess Y occupancy disrupted Cu–Zn interactions, reducing CO<sub>2</sub> conversion and stability, highlighting critical trade-offs. These insight underscore the potential of Cu/Zn/Y catalysts for carbon-neutral technologies and emphasize the need for optimized Y doping to balance selectivity and stability.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":508,\"journal\":{\"name\":\"Catalysis Letters\",\"volume\":\"155 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10562-025-05048-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-05048-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过二氧化碳加氢实现碳中和对于可持续能源和化学工业至关重要,其中甲醇生产仍然是一个关键目标。尽管已有催化剂,但其二氧化碳转化率低、甲醇选择性差、活性不稳定等问题依然存在。本研究通过共沉淀法合成一种新型三元Cu/Zn/Y催化剂来解决这些限制。在5 MPa、250℃、H2/CO2 = 3:1、12,000 h⁻¹条件下测试,该催化剂的CO2转化率为16.6%,甲醇选择性为56.6%,甲醇时空产率(402.3 mg/(gcat·h))比CuZnAl基准高14.3%。最佳的钇掺杂使甲醇选择性提高了20%,这是由于铜的分散性得到了改善。然而,过量的Y占用破坏了Cu-Zn相互作用,降低了CO2的转化和稳定性,突出了关键的权衡。这些发现强调了Cu/Zn/Y催化剂在碳中性技术中的潜力,并强调了优化Y掺杂以平衡选择性和稳定性的必要性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Highly Selective CuZnY Catalyst for CO2 Hydrogenation to Methanol

Achieving carbon neutrality through CO2 hydrogenation is critical for sustainable energy and chemical industries, where methanol production remains a key target. Despite existing catalysts, challenges persist in low CO2 conversion, poor methanol selectivity, and activity instability. This study introduces a novel ternary Cu/Zn/Y catalyst synthesized via co-precipitation to address these limitations. Tested under 5 MPa, 250 °C, H2/CO2 = 3:1, and 12,000 h⁻¹, the catalyst achieved a CO2 conversion rate of 16.6% and a methanol selectivity of 56.6%, outperforming the CuZnAl benchmark with a 14.3% higher methanol space-time yield (402.3 mg/(gcat·h)). Optimal yttrium doping enhanced methanol selectivity by 20%, attributed to improved copper dispersion. However, excess Y occupancy disrupted Cu–Zn interactions, reducing CO2 conversion and stability, highlighting critical trade-offs. These insight underscore the potential of Cu/Zn/Y catalysts for carbon-neutral technologies and emphasize the need for optimized Y doping to balance selectivity and stability.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信