Dendritic Composite Photocatalyst AgVO3/ZnIn2S4: Preparation and Study on Photocatalytic Hydrogen Production Performance

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Jia Du, Li Liu, Yonghui Wang, Chen Liu, Shunshun Yu, Yan Xue, Qiang Liu, Keliang Wu
{"title":"Dendritic Composite Photocatalyst AgVO3/ZnIn2S4: Preparation and Study on Photocatalytic Hydrogen Production Performance","authors":"Jia Du,&nbsp;Li Liu,&nbsp;Yonghui Wang,&nbsp;Chen Liu,&nbsp;Shunshun Yu,&nbsp;Yan Xue,&nbsp;Qiang Liu,&nbsp;Keliang Wu","doi":"10.1007/s10562-025-05053-1","DOIUrl":null,"url":null,"abstract":"<div><p>To mitigate the problem of rapid charge carrier recombination in isolated ZnIn<sub>2</sub>S<sub>4</sub> photocatalysts, researchers developed an AgVO<sub>3</sub>/ZnIn<sub>2</sub>S<sub>4</sub> hybrid material through controlled composite formation. The photocatalytic reaction facilitated the reduction of Ag<sup>+</sup> ions to metallic Ag nanoparticles, which effectively mediated electron transfer processes. This investigation systematically evaluated how different AgVO<sub>3</sub> incorporation levels influenced the composite hydrogen generation efficiency. Optimal performance was achieved with the 20 wt% AgVO<sub>3</sub>/ZnIn<sub>2</sub>S<sub>4</sub> formulation, demonstrating exceptional photocatalytic activity with a hydrogen yield of 15.932 mmol·g<sup>− 1</sup>·h<sup>− 1</sup> and a corresponding photocurrent density of 13.33 µA·cm<sup>− 2</sup>. These findings confirm that the engineered composite architecture successfully suppresses charge recombination while significantly boosting photocatalytic performance. The developed modification approach for ZnIn<sub>2</sub>S<sub>4</sub> provides important insights for future catalyst design and optimization strategies. This research represents meaningful progress in developing robust and high-efficiency photocatalytic systems for sustainable hydrogen production and related energy applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-05053-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To mitigate the problem of rapid charge carrier recombination in isolated ZnIn2S4 photocatalysts, researchers developed an AgVO3/ZnIn2S4 hybrid material through controlled composite formation. The photocatalytic reaction facilitated the reduction of Ag+ ions to metallic Ag nanoparticles, which effectively mediated electron transfer processes. This investigation systematically evaluated how different AgVO3 incorporation levels influenced the composite hydrogen generation efficiency. Optimal performance was achieved with the 20 wt% AgVO3/ZnIn2S4 formulation, demonstrating exceptional photocatalytic activity with a hydrogen yield of 15.932 mmol·g− 1·h− 1 and a corresponding photocurrent density of 13.33 µA·cm− 2. These findings confirm that the engineered composite architecture successfully suppresses charge recombination while significantly boosting photocatalytic performance. The developed modification approach for ZnIn2S4 provides important insights for future catalyst design and optimization strategies. This research represents meaningful progress in developing robust and high-efficiency photocatalytic systems for sustainable hydrogen production and related energy applications.

Graphical Abstract

枝状复合光催化剂AgVO3/ZnIn2S4的制备及光催化制氢性能研究
为了缓解分离ZnIn2S4光催化剂中快速载流子重组的问题,研究人员通过控制复合形成开发了AgVO3/ZnIn2S4杂化材料。光催化反应促进银离子还原为金属银纳米粒子,有效地介导了电子转移过程。本研究系统评价了不同AgVO3掺入水平对复合产氢效率的影响。当AgVO3/ZnIn2S4配比为20 wt%时,其光催化性能最佳,产氢率为15.932 mmol·g−1·h−1,相应的光电流密度为13.33 μ a·cm−2。这些发现证实了工程复合材料结构成功地抑制了电荷重组,同时显著提高了光催化性能。所开发的ZnIn2S4改性方法为未来催化剂的设计和优化策略提供了重要的见解。这项研究代表了在开发稳健和高效的光催化系统用于可持续制氢和相关能源应用方面取得的有意义的进展。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信