Annual Review of Biophysics最新文献

筛选
英文 中文
Mitochondrial Dynamics at Different Levels: From Cristae Dynamics to Interorganellar Cross Talk. 不同层次的线粒体动力学:从晶状体动力学到细胞器间的交叉对话
IF 10.4 1区 生物学
Annual Review of Biophysics Pub Date : 2024-07-01 Epub Date: 2024-06-28 DOI: 10.1146/annurev-biophys-030822-020736
Arun Kumar Kondadi, Andreas S Reichert
{"title":"Mitochondrial Dynamics at Different Levels: From Cristae Dynamics to Interorganellar Cross Talk.","authors":"Arun Kumar Kondadi, Andreas S Reichert","doi":"10.1146/annurev-biophys-030822-020736","DOIUrl":"10.1146/annurev-biophys-030822-020736","url":null,"abstract":"<p><p>Mitochondria are essential organelles performing important cellular functions ranging from bioenergetics and metabolism to apoptotic signaling and immune responses. They are highly dynamic at different structural and functional levels. Mitochondria have been shown to constantly undergo fusion and fission processes and dynamically interact with other organelles such as the endoplasmic reticulum, peroxisomes, and lipid droplets. The field of mitochondrial dynamics has evolved hand in hand with technological achievements including advanced fluorescence super-resolution nanoscopy. Dynamic remodeling of the cristae membrane within individual mitochondria, discovered very recently, opens up a further exciting layer of mitochondrial dynamics. In this review, we discuss mitochondrial dynamics at the following levels: (<i>a</i>) within an individual mitochondrion, (<i>b</i>) among mitochondria, and (<i>c</i>) between mitochondria and other organelles. Although the three tiers of mitochondrial dynamics have in the past been classified in a hierarchical manner, they are functionally connected and must act in a coordinated manner to maintain cellular functions and thus prevent various human diseases.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":10.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139081095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomolecular Condensates in Contact with Membranes. 与膜接触的生物分子凝结物。
IF 10.4 1区 生物学
Annual Review of Biophysics Pub Date : 2024-07-01 Epub Date: 2024-06-28 DOI: 10.1146/annurev-biophys-030722-121518
Agustín Mangiarotti, Rumiana Dimova
{"title":"Biomolecular Condensates in Contact with Membranes.","authors":"Agustín Mangiarotti, Rumiana Dimova","doi":"10.1146/annurev-biophys-030722-121518","DOIUrl":"10.1146/annurev-biophys-030722-121518","url":null,"abstract":"<p><p>Biomolecular condensates are highly versatile membraneless organelles involved in a plethora of cellular processes. Recent years have witnessed growing evidence of the interaction of these droplets with membrane-bound cellular structures. Condensates' adhesion to membranes can cause their mutual molding and regulation, and their interaction is of fundamental relevance to intracellular organization and communication, organelle remodeling, embryogenesis, and phagocytosis. In this article, we review advances in the understanding of membrane-condensate interactions, with a focus on in vitro models. These minimal systems allow the precise characterization and tuning of the material properties of both membranes and condensates and provide a workbench for visualizing the resulting morphologies and quantifying the interactions. These interactions can give rise to diverse biologically relevant phenomena, such as molecular-level restructuring of the membrane, nano- to microscale ruffling of the condensate-membrane interface, and coupling of the protein and lipid phases.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":10.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMR and Single-Molecule FRET Insights into Fast Protein Motions and Their Relation to Function. 核磁共振和单分子 FRET 透视快速蛋白质运动及其与功能的关系
IF 10.4 1区 生物学
Annual Review of Biophysics Pub Date : 2024-07-01 Epub Date: 2024-06-28 DOI: 10.1146/annurev-biophys-070323-022428
Paul Schanda, Gilad Haran
{"title":"NMR and Single-Molecule FRET Insights into Fast Protein Motions and Their Relation to Function.","authors":"Paul Schanda, Gilad Haran","doi":"10.1146/annurev-biophys-070323-022428","DOIUrl":"10.1146/annurev-biophys-070323-022428","url":null,"abstract":"<p><p>Proteins often undergo large-scale conformational transitions, in which secondary and tertiary structure elements (loops, helices, and domains) change their structures or their positions with respect to each other. Simple considerations suggest that such dynamics should be relatively fast, but the functional cycles of many proteins are often relatively slow. Sophisticated experimental methods are starting to tackle this dichotomy and shed light on the contribution of large-scale conformational dynamics to protein function. In this review, we focus on the contribution of single-molecule Förster resonance energy transfer and nuclear magnetic resonance (NMR) spectroscopies to the study of conformational dynamics. We briefly describe the state of the art in each of these techniques and then point out their similarities and differences, as well as the relative strengths and weaknesses of each. Several case studies, in which the connection between fast conformational dynamics and slower function has been demonstrated, are then introduced and discussed. These examples include both enzymes and large protein machines, some of which have been studied by both NMR and fluorescence spectroscopies.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":10.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Molecule Imaging of Integral Membrane Protein Dynamics and Function. 整体膜蛋白动态和功能的单分子成像。
IF 10.4 1区 生物学
Annual Review of Biophysics Pub Date : 2024-07-01 DOI: 10.1146/annurev-biophys-070323-024308
Arnab Modak, Zeliha Kilic, Kanokporn Chattrakun, Daniel S Terry, Ravi C Kalathur, Scott C Blanchard
{"title":"Single-Molecule Imaging of Integral Membrane Protein Dynamics and Function.","authors":"Arnab Modak, Zeliha Kilic, Kanokporn Chattrakun, Daniel S Terry, Ravi C Kalathur, Scott C Blanchard","doi":"10.1146/annurev-biophys-070323-024308","DOIUrl":"https://doi.org/10.1146/annurev-biophys-070323-024308","url":null,"abstract":"<p><p>Integral membrane proteins (IMPs) play central roles in cellular physiology and represent the majority of known drug targets. Single-molecule fluorescence and fluorescence resonance energy transfer (FRET) methods have recently emerged as valuable tools for investigating structure-function relationships in IMPs. This review focuses on the practical foundations required for examining polytopic IMP function using single-molecule FRET (smFRET) and provides an overview of the technical and conceptual frameworks emerging from this area of investigation. In this context, we highlight the utility of smFRET methods to reveal transient conformational states critical to IMP function and the use of smFRET data to guide structural and drug mechanism-of-action investigations. We also identify frontiers where progress is likely to be paramount to advancing the field.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":10.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization. 从核小体到分区:染色质组织的物理化学相互作用。
IF 10.4 1区 生物学
Annual Review of Biophysics Pub Date : 2024-07-01 Epub Date: 2024-06-28 DOI: 10.1146/annurev-biophys-030822-032650
Shuming Liu, Advait Athreya, Zhuohan Lao, Bin Zhang
{"title":"From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization.","authors":"Shuming Liu, Advait Athreya, Zhuohan Lao, Bin Zhang","doi":"10.1146/annurev-biophys-030822-032650","DOIUrl":"10.1146/annurev-biophys-030822-032650","url":null,"abstract":"<p><p>Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":10.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biophysical Modeling of Synaptic Plasticity 突触可塑性的生物物理建模
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2024-02-21 DOI: 10.1146/annurev-biophys-072123-124954
Christopher T. Lee, Miriam Bell, Mayte Bonilla-Quintana, Padmini Rangamani
{"title":"Biophysical Modeling of Synaptic Plasticity","authors":"Christopher T. Lee, Miriam Bell, Mayte Bonilla-Quintana, Padmini Rangamani","doi":"10.1146/annurev-biophys-072123-124954","DOIUrl":"https://doi.org/10.1146/annurev-biophys-072123-124954","url":null,"abstract":"Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.Expected final online publication date for the Annual Review of Biophysics, Volume 53 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial Electrophysiology 细菌电生理学
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2024-02-21 DOI: 10.1146/annurev-biophys-030822-032215
Wei-Chang Lo, Ekaterina Krasnopeeva, Teuta Pilizota
{"title":"Bacterial Electrophysiology","authors":"Wei-Chang Lo, Ekaterina Krasnopeeva, Teuta Pilizota","doi":"10.1146/annurev-biophys-030822-032215","DOIUrl":"https://doi.org/10.1146/annurev-biophys-030822-032215","url":null,"abstract":"Bacterial ion fluxes are involved in the generation of energy, transport, and motility. As such, bacterial electrophysiology is fundamentally important for the bacterial life cycle, but it is often neglected and consequently, by and large, not understood. Arguably, the two main reasons for this are the complexity of measuring relevant variables in small cells with a cell envelope that contains the cell wall and the fact that, in a unicellular organism, relevant variables become intertwined in a nontrivial manner. To help give bacterial electrophysiology studies a firm footing, in this review, we go back to basics. We look first at the biophysics of bacterial membrane potential, and then at the approaches and models developed mostly for the study of neurons and eukaryotic mitochondria. We discuss their applicability to bacterial cells. Finally, we connect bacterial membrane potential with other relevant (electro)physiological variables and summarize methods that can be used to both measure and influence bacterial electrophysiology.Expected final online publication date for the Annual Review of Biophysics, Volume 53 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139928014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cholesterol and Lipid Rafts in the Biogenesis of Amyloid-β Protein and Alzheimer's Disease 胆固醇和脂质筏在淀粉样蛋白-β和阿尔茨海默病的生物生成过程中的作用
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2024-02-21 DOI: 10.1146/annurev-biophys-062823-023436
George A. Pantelopulos, Conor B. Abraham, John E. Straub
{"title":"Cholesterol and Lipid Rafts in the Biogenesis of Amyloid-β Protein and Alzheimer's Disease","authors":"George A. Pantelopulos, Conor B. Abraham, John E. Straub","doi":"10.1146/annurev-biophys-062823-023436","DOIUrl":"https://doi.org/10.1146/annurev-biophys-062823-023436","url":null,"abstract":"Cholesterol has been conjectured to be a modulator of the amyloid cascade, the mechanism that produces the amyloid-β (Aβ) peptides implicated in the onset of Alzheimer's disease. We propose that cholesterol impacts the genesis of Aβ not through direct interaction with proteins in the bilayer, but indirectly by inducing the liquid-ordered phase and accompanying liquid–liquid phase separations, which partition proteins in the amyloid cascade to different lipid domains and ultimately to different endocytotic pathways. We explore the full process of Aβ genesis in the context of liquid-ordered phases induced by cholesterol, including protein partitioning into lipid domains, mechanisms of endocytosis experienced by lipid domains and secretases, and pH-controlled activation of amyloid precursor protein secretases in specific endocytotic environments. Outstanding questions on the essential role of cholesterol in the amyloid cascade are identified for future studies.Expected final online publication date for the Annual Review of Biophysics, Volume 53 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Cell Mechanics: Structural Determinants and Functional Relevance 单细胞力学:结构决定因素和功能相关性
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2024-02-21 DOI: 10.1146/annurev-biophys-030822-030629
Marta Urbanska, Jochen Guck
{"title":"Single-Cell Mechanics: Structural Determinants and Functional Relevance","authors":"Marta Urbanska, Jochen Guck","doi":"10.1146/annurev-biophys-030822-030629","DOIUrl":"https://doi.org/10.1146/annurev-biophys-030822-030629","url":null,"abstract":"The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.Expected final online publication date for the Annual Review of Biophysics, Volume 53 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolomics and Microbial Metabolism: Toward a Systematic Understanding 代谢组学与微生物代谢:实现系统性理解
IF 12.4 1区 生物学
Annual Review of Biophysics Pub Date : 2023-12-18 DOI: 10.1146/annurev-biophys-030722-021957
Duncan Holbrook-Smith, Julian Trouillon, Uwe Sauer
{"title":"Metabolomics and Microbial Metabolism: Toward a Systematic Understanding","authors":"Duncan Holbrook-Smith, Julian Trouillon, Uwe Sauer","doi":"10.1146/annurev-biophys-030722-021957","DOIUrl":"https://doi.org/10.1146/annurev-biophys-030722-021957","url":null,"abstract":"Over the past decades, our understanding of microbial metabolism has increased dramatically. Metabolomics, a family of techniques that are used to measure the quantities of small molecules in biological samples, has been central to these efforts. Advances in analytical chemistry have made it possible to measure the relative and absolute concentrations of more and more compounds with increasing levels of certainty. In this review, we highlight how metabolomics has contributed to understanding microbial metabolism and in what ways it can still be deployed to expand our systematic understanding of metabolism. To that end, we explain how metabolomics was used to ( a) characterize network topologies of metabolism and its regulation networks, ( b) elucidate the control of metabolic function, and ( c) understand the molecular basis of higher-order phenomena. We also discuss areas of inquiry where technological advances should continue to increase the impact of metabolomics, as well as areas where our understanding is bottlenecked by other factors such as the availability of statistical and modeling frameworks that can extract biological meaning from metabolomics data.Expected final online publication date for the Annual Review of Biophysics, Volume 53 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":12.4,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138744442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信