Molecular Level Super-Resolution Fluorescence Imaging.

IF 10.4 1区 生物学 Q1 BIOPHYSICS
Niels Radmacher, Alexey I Chizhik, Oleksii Nevskyi, José Ignacio Gallea, Ingo Gregor, Jörg Enderlein
{"title":"Molecular Level Super-Resolution Fluorescence Imaging.","authors":"Niels Radmacher, Alexey I Chizhik, Oleksii Nevskyi, José Ignacio Gallea, Ingo Gregor, Jörg Enderlein","doi":"10.1146/annurev-biophys-071524-105321","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last 30 years, fluorescence microscopy, renowned for its sensitivity and specificity, has undergone a revolution in resolving ever-smaller details. This advancement began with stimulated emission depletion (STED) microscopy and progressed with techniques such as photoactivatable localization microscopy and stochastic optical reconstruction microscopy (STORM). Single-molecule localization microscopy (SMLM), which encompasses methods like direct STORM, has significantly enhanced image resolution. Even though its speed is slower than that of STED, SMLM achieves higher resolution by overcoming photobleaching limitations, particularly through DNA point accumulation for imaging in nanoscale topography (DNA-PAINT), which continuously renews fluorescent labels. Additionally, cryo-fluorescence microscopy and advanced techniques like minimal photon fluxes imaging (MINFLUX) have pushed the boundaries toward molecular resolution SMLM. This review discusses the latest developments in SMLM, highlighting methods like resolution enhancement by sequential imaging (RESI) and PAINT-MINFLUX and exploring axial localization techniques such as supercritical angle fluorescence and metal-induced energy transfer. These advancements promise to revolutionize fluorescence microscopy, providing resolution comparable to that of electron microscopy.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":" ","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-071524-105321","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last 30 years, fluorescence microscopy, renowned for its sensitivity and specificity, has undergone a revolution in resolving ever-smaller details. This advancement began with stimulated emission depletion (STED) microscopy and progressed with techniques such as photoactivatable localization microscopy and stochastic optical reconstruction microscopy (STORM). Single-molecule localization microscopy (SMLM), which encompasses methods like direct STORM, has significantly enhanced image resolution. Even though its speed is slower than that of STED, SMLM achieves higher resolution by overcoming photobleaching limitations, particularly through DNA point accumulation for imaging in nanoscale topography (DNA-PAINT), which continuously renews fluorescent labels. Additionally, cryo-fluorescence microscopy and advanced techniques like minimal photon fluxes imaging (MINFLUX) have pushed the boundaries toward molecular resolution SMLM. This review discusses the latest developments in SMLM, highlighting methods like resolution enhancement by sequential imaging (RESI) and PAINT-MINFLUX and exploring axial localization techniques such as supercritical angle fluorescence and metal-induced energy transfer. These advancements promise to revolutionize fluorescence microscopy, providing resolution comparable to that of electron microscopy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信