Statistical Thermodynamics of the Protein Ensemble: Mediating Function and Evolution.

IF 10.4 1区 生物学 Q1 BIOPHYSICS
Vincent J Hilser, James O Wrabl, Charles E F Millard, Anna Schmitz, Sarah J Brantley, Marie Pearce, Joe Rehfus, Miranda M Russo, Keila Voortman-Sheetz
{"title":"Statistical Thermodynamics of the Protein Ensemble: Mediating Function and Evolution.","authors":"Vincent J Hilser, James O Wrabl, Charles E F Millard, Anna Schmitz, Sarah J Brantley, Marie Pearce, Joe Rehfus, Miranda M Russo, Keila Voortman-Sheetz","doi":"10.1146/annurev-biophys-061824-104900","DOIUrl":null,"url":null,"abstract":"<p><p>The growing appreciation of native state conformational fluctuations mediating protein function calls for critical reevaluation of protein evolution and adaptation. If proteins are ensembles, does nature select solely for ground state structure, or are conformational equilibria between functional states also conserved? If so, what is the mechanism and how can it be measured? Addressing these fundamental questions, we review our investigation into the role of local unfolding fluctuations in the native state ensembles of proteins. We describe the functional importance of these ubiquitous fluctuations, as revealed through studies of adenylate kinase. We then summarize elucidation of thermodynamic organizing principles, which culminate in a quantitative probe for evolutionary conservation of protein energetics. Finally, we show that these principles are predictive of sequence compatibility for multiple folds, providing a unique thermodynamic perspective on metamorphic proteins. These research areas demonstrate that the locally unfolded ensemble is an emerging, important mechanism of protein evolution.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":" ","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-061824-104900","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The growing appreciation of native state conformational fluctuations mediating protein function calls for critical reevaluation of protein evolution and adaptation. If proteins are ensembles, does nature select solely for ground state structure, or are conformational equilibria between functional states also conserved? If so, what is the mechanism and how can it be measured? Addressing these fundamental questions, we review our investigation into the role of local unfolding fluctuations in the native state ensembles of proteins. We describe the functional importance of these ubiquitous fluctuations, as revealed through studies of adenylate kinase. We then summarize elucidation of thermodynamic organizing principles, which culminate in a quantitative probe for evolutionary conservation of protein energetics. Finally, we show that these principles are predictive of sequence compatibility for multiple folds, providing a unique thermodynamic perspective on metamorphic proteins. These research areas demonstrate that the locally unfolded ensemble is an emerging, important mechanism of protein evolution.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信