M. Huerta-Gomez-Merodio, M. V. Requena-Garcia-Cruz
{"title":"Application of MS Excel and FastTest PlugIn to automatically evaluate the students' performance in structural engineering courses","authors":"M. Huerta-Gomez-Merodio, M. V. Requena-Garcia-Cruz","doi":"10.1002/cae.22799","DOIUrl":"https://doi.org/10.1002/cae.22799","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>In recent years, the method of assessment in universities has been rapidly changing, shifting from entirely in-person evaluations to a blended evaluation approach (b-Learning).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Purpose</h3>\u0000 \u0000 <p>To effectively implement this type of assessment, it is necessary to create numerous similar problems with different data sets. In structural engineering courses, this entails a significant amount of work for the lecturers. Therefore, this work introduces a novel teaching and evaluation strategy leveraging technology to automate tasks, aiming to enhance student monitoring and alleviate lecturer workload.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Method</h3>\u0000 \u0000 <p>The digital platform Moodle has been used combined with the FastTest PlugIn to create computer coding to develop different problems. These problems, maintaining consistent structures but varying data, served both instructional and evaluative purposes in two structural engineering courses. As a novelty, these problems are automatically evaluated and created following the coding routine created. Some drawbacks have been identified while applying the method. Scientifically validated quizzes have been used to assess the efficacy of the method in engaging students and enhancing their confidence and satisfaction.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Findings suggest that while initial setup requires additional time, the investment pays off in the grading efficiency, benefiting educators and students alike. The method has facilitated the creation of additional exercises for practice, and the inclusion of automatically corrected diagrams was appreciated by students. The results have indicated that this method has improved the motivation, attention, and confidence among students, leading to significant enhancements in academic performance, up to 40%.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>This methodology has achieved positive responses from students. Hence, it is concluded that the time invested in developing structural engineering problems using MS Excel and the FastTest PlugIn in Moodle is worthwhile, as it motivates students to improve their academic performance. Furthermore, as the main outcome, it is shown that the time invested by the lecturer in developing the problems is amortized in subsequent academic years since the problems are graded automatically. For courses with many students, it is amortized sooner.</p>\u0000 ","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 6","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cae.22799","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vando Gusti Al Hakim, Nuur Azreen Paiman, Mohamad Haidar Syaifullah Rahman
{"title":"Genie-on-demand: A custom AI chatbot for enhancing learning performance, self-efficacy, and technology acceptance in occupational health and safety for engineering education","authors":"Vando Gusti Al Hakim, Nuur Azreen Paiman, Mohamad Haidar Syaifullah Rahman","doi":"10.1002/cae.22800","DOIUrl":"https://doi.org/10.1002/cae.22800","url":null,"abstract":"<p>Occupational Health and Safety (OHS) education is essential for preparing engineering students to maintain safety standards and prevent workplace hazards. Traditional learning resources, such as textbooks, can be time-consuming and inadequate for immediate, context-specific queries. Advanced AI chatbots offer interactive and immediate feedback, but they often lack specificity and depend on users' prompting skills, which not all students possess. This study introduces “Genie-on-Demand,” a custom AI chatbot designed to address students' queries with precise, curriculum-aligned responses. Educators can train the chatbot using specific learning materials by uploading PDFs, ensuring relevant and accurate answers. A quasi-experimental study was conducted with 106 electrical engineering students divided into three groups: those using the custom chatbot, those using a conventional chatbot (ChatGPT), and those employing traditional learning methods. Results demonstrated that the custom chatbot significantly improved learning performance, self-efficacy, and technology acceptance compared to other methods. Students reported increased confidence and effectiveness in using the custom chatbot as a learning assistant. This study highlights the potential of customized AI solutions in education, with versatile applications across various disciplines.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 6","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iñigo Cuiñas, Iago González-Alonso, Isabel Expósito, Manuel García-Sánchez, Pablo Torío
{"title":"Virtual reality for training on measuring human exposure to electromagnetic fields around cellular base stations","authors":"Iñigo Cuiñas, Iago González-Alonso, Isabel Expósito, Manuel García-Sánchez, Pablo Torío","doi":"10.1002/cae.22798","DOIUrl":"https://doi.org/10.1002/cae.22798","url":null,"abstract":"<p>Assessing of human exposure to electromagnetic field is one of the tasks of a telecommunication engineer. This activity has significant social interest, as the measured levels must comply with health safety limits. It is also an appealing area for students as it integrates concepts related to radiofrequency, antennas, and propagation, both theoretically and practically. We offer our students practical activities for measuring field levels, using test and measurement equipment. Additionally, we have developed a virtual reality tool to enhance our students' skills in this area, which is presented in this paper. We compare the learning outcomes of two separate groups of students to validate the performance of this new tool. The first group attended a lesson with theoretical content and then performed outdoor measurements. The second group had the added virtual reality experience before using the test equipment. Quantitative results show an improvement in the assimilation of the concepts, and qualitative feedback from the users confirms the effectiveness of this approach.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 6","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cae.22798","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel Castelblanco, Laura Cruz-Castro, Zhenlin Yang
{"title":"Performance of a Large-Language Model in scoring construction management capstone design projects","authors":"Gabriel Castelblanco, Laura Cruz-Castro, Zhenlin Yang","doi":"10.1002/cae.22796","DOIUrl":"10.1002/cae.22796","url":null,"abstract":"<p>Grading is one of the most relevant hurdles for instructors, diverting instructor's focus on the development of engaging learning activities, class preparation, and attending to students' questions. Institutions and instructors are continuously looking for alternatives to reduce educators' time required on grading, frequently, resulting in hiring teaching assistants whose inexperience and frequent rotation can lead to inconsistent and subjective evaluations. Large Language Models (LLMs) like GPT-4 may alleviate grading challenges; however, research in this field is limited when dealing with assignments requiring specialized knowledge, complex critical thinking, subjective, and creative. This research investigates whether GPT-4's scores correlate with human grading in a construction capstone project and how the use of criteria and rubrics in GPT influences this correlation. Projects were graded by two human graders and three training configurations in GPT-4: no detailed criteria, paraphrased criteria, and explicit rubrics. Each configuration was tested through 10 iterations to evaluate GPT consistency. Results challenge GPT-4's potential to grade argumentative assignments. GPT-4's score correlates slightly better (although poor overall) with human evaluations when no additional information is provided, underscoring the poor impact of the specificity of training materials for GPT scoring in this type of assignment. Despite the LLMs' promises, their limitations include variability in consistency and reliance on statistical pattern analysis, which can lead to misleading evaluations along with privacy concerns when handling sensitive student data. Educators must carefully design grading guidelines to harness the full potential of LLMs in academic assessments, balancing AI's efficiency with the need for nuanced human judgment.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 6","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of jigsaw-integrated task-driven learning on students' motivation, computational thinking, collaborative skills, and programming performance in a high-school programming course","authors":"Zehui Zhan, Tingting Li, Yaner Ye","doi":"10.1002/cae.22793","DOIUrl":"10.1002/cae.22793","url":null,"abstract":"<p>Computer programming has emerged as an important field in K-12 science, technology, engineering, and maths (STEM) education in the AI era. However, contemporary programming education is hindered by fragmented course content, high complexity, and difficulties in maintaining engagement, impeding smooth progress. More effective collaborative learning strategies need to be explored. This study constructed jigsaw-integrated task-driven learning (jigsaw-TDL) in a high school Python programming course under a STEM curriculum and verified its teaching effectiveness on students’ learning motivation, computational thinking, collaborative skills, and programming performance both quantitatively and qualitatively. Nighty-nine high school students were randomly assigned to a jigsaw-TDL group and a general collaborative task-driven learning group (collaborative-TDL). During the experiment, a Python programming course was introduced over 7 weeks. Questionnaires, programming tasks, and semistructured interviews were comprehensively applied to examine students’ learning outcomes. Finally, the jigsaw-TDL group showed significantly better performance than the collaborative-TDL group in learning motivation, computational thinking, and collaborative skills. However, it only led to better programming performance in the less complex tasks. The majority of students held a positive attitude toward the jigsaw-TDL model, acknowledging its benefits in group collaboration, programming knowledge acquisition, and application. This research provides empirical evidence and potential guidance for task organization and collaborative learning support in programming courses and STEM education.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 6","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Teaching experience for process identification using first-order-plus-time-delay models","authors":"Nourdine Aliane","doi":"10.1002/cae.22794","DOIUrl":"10.1002/cae.22794","url":null,"abstract":"<p>This paper introduces an instructional framework for process identification, combining theoretical concepts with practical laboratory exercises, focusing particularly on the identification of first-order-plus-time-delay models. Our methodology emphasizes guiding students through the various stages involved in the system identification process, namely mastering techniques, such as data acquisition and preprocessing, identification and validation stages, and method comparison. The laboratory assignment is structured into three distinct stages: an initial prelab task working with simulated data, the hands-on work with laboratory equipment, and the assignment report writing and oral presentation. The assessment of students' learning outcomes is conducted using a detailed rubric. Feedback from a focus group interview indicates that the majority of students appreciated the well-balanced content, highlighting a strong link between theoretical concepts and practical application.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 6","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cae.22794","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nutnicha Nigon, Julie D. Tucker, Thomas W. Ekstedt, Brandon C. Jeong, Dana C. Simionescu, Milo D. Koretsky
{"title":"Adaptivity or agency? Educational technology design for conceptual learning of materials science","authors":"Nutnicha Nigon, Julie D. Tucker, Thomas W. Ekstedt, Brandon C. Jeong, Dana C. Simionescu, Milo D. Koretsky","doi":"10.1002/cae.22790","DOIUrl":"10.1002/cae.22790","url":null,"abstract":"<p>As the use of computers in education increases, adaptive learning platforms are becoming more common. However, these adaptive systems are typically designed to support acquisition of declarative knowledge and/or procedural fluency but rarely address conceptual learning. In this work, we developed the Crystallography Adaptive Learning Module (CALM) for materials science to provide students a tool for individualized conceptual learning. We used a randomized quasi-experimental design comparing two instructional designs with different levels of computer-provided direction and student agency. Undergraduate students were randomly assigned to one of two different instructional designs; one design had students complete an individualized, adaptive path using the CALM (<i>N</i> = 80), and the other gave students the freedom to explore CALM's learning resources but with limited guidance (<i>N</i> = 85). Within these two designs, we also investigated students among different cumulative grade point average (GPA) groups. While there was no statistically significant difference in the measure of conceptual understanding between instructional designs or among the groups with the same GPA, there is evidence to suggest the CALM improves conceptual understanding of students in the middle GPA group. Students using CALM also showed increased participation with the interactive learning videos compared to the other design. The number of videos watched in each instructional condition aligns with overall academic performance as the low GPA group received the most assigned supplements but watched the least videos by choice. This study provides insight for technology developers on how to develop educational adaptive technology systems that provide a proper level of student agency to promote conceptual understanding in challenging STEM topics.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 6","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Competency-based TPACK approaches to computational thinking and integrated STEM: A conceptual exploration","authors":"Vladimiras Dolgopolovas, Valentina Dagiene","doi":"10.1002/cae.22788","DOIUrl":"10.1002/cae.22788","url":null,"abstract":"<p>In this conceptual study, we explore the incorporation of computational thinking (CT) within integrated Science, Technology, Engineering, and Mathematics (STEM) education, aiming to enhance the Technological Pedagogical Content Knowledge (TPACK) framework for teacher professional development. Despite the fundamental role of mathematics in K-16 and engineering education, its theoretical and practical dimensions in a transdisciplinary STEM context and its interlinks with CT remain underexplored. This gap extends to the professional development of teachers in research-oriented STEM environments, which presents significant challenges. The study aims to address these issues by repositioning cognitive-adaptive competencies such as CT and design thinking (DT) as a crucial enabler for STEM teacher professional competency, advocating for a move beyond normative approaches. We comprehensively analyze the integration efforts of CT in STEM, which often rely on declarative definitions without substantive practical implications. The study poses questions on (1) how CT can be effectively integrated into STEM, (2) the characteristics of the normative-adaptive model for teacher education, and (3) the development of a conceptual educational framework focused on mathematical modeling, simulation design, and student engagement in research. Drawing on innovative educational practices, we scrutinize the integration of CT and DT through examples from mathematics, emphasizing the importance of developing computational models and algorithms. Ultimately, we propose a competency-centered normative-adaptive-context aware model of STEM integration (NACAMS)-TPACK model that enhances the classical TPACK framework by interlinking computational, design, and general pedagogical competencies. This study is particularly relevant for educators, policymakers, and researchers involved in K-16 STEM and engineering education.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 6","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FLIGBY for graduates' employability enhancement in Computer Engineering","authors":"Fernando Almeida, Zoltan Buzady","doi":"10.1002/cae.22789","DOIUrl":"10.1002/cae.22789","url":null,"abstract":"<p>Serious games can play a crucial role in developing competencies for the job market, offering an innovative and engaging approach to learning. This study uses FLIGBY to develop employability skills among computer engineering graduates. FLIGBY is a serious game that simulates a virtual company environment where players make strategic decisions, emphasizing the principles of flow and positive psychology. Immersion in realistic scenarios provides practical experience, contributing to the development of market-ready skills. A quantitative methodology based on descriptive statistics and hypothesis testing was adopted to measure the development of competencies for the job market using the Systems Engineering Competency Framework. The results show that competence development occurs mainly in the professional and managerial dimensions. In contrast, there is no development of core and technical competencies. Furthermore, the perception of the development of these competencies occurs mainly for students with more years of professional experience. The experiential nature of FLIGBY allows users to develop practical knowledge, promoting adaptability and resilience. This gamified approach accelerates the learning curve, preparing individuals for real-world challenges in the computer engineering workplace.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 6","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}